Etat d’avancement des travaux sur des scénarios prospectifs de traitement et conditionnement des déchets d’enrobés bitumineux

(article 48.1 de l’arrêté PNGMDR 2016-2018)

2018

MOA/Cab.AG/18-119
SOMMAIRE

1. INTRODUCTION

2. CONTEXTE DE LA DEMANDE

3. LA PROBLÉMATIQUE

4. LA DEMARCHE
 4.1 LE SYSTEME ETUDE
 4.2 L’ANALYSE MULTICRITERES

5. DONNEES D’ENTREE SUR LES COLIS BITUMES

6. ETAT DE L’ART A L’INTERNATIONAL SUR LES PROCEDES DE TRAITEMENT THERMIQUE DE DECHETS RADIOACTIFS
 6.1 GENERALITES SUR LE TRAITEMENT THERMIQUE DE DECHETS
 6.2 INSTALLATION ZWILAG (SUISSE)
 6.3 INSTALLATION PLUTON (RUSSIE)
 6.4 INSTALLATION DE TRAITEMENT DES DECHETS DE KOZLODUY (BULGARIE)
 6.5 Recapitulatif des installations industrielles de traitement de déchets radioactifs par torche à plasma
 6.6 LE PROCEDE THOR (ETATS-UNIS)
 6.7 INCINERATEUR CENTRACO, SOCODEI (FRANCE)

7. LES OUTILS DE NEUTRALISATION DE LA REACTIVITE DES DECHETS BITUMINEUX
 7.1 LES METHODES ENVISAGEABLES DE PRE-TRAITEMENT DES COLIS D’ENROBES DE BITUME
 7.1.1 La Liquéfaction du bitume (séparation enveloppe/bitume)
 7.1.2 Le Crybroyage
 7.1.3 La découpe par jet d’azote liquide (technologie NitroJet®)
 7.1.4 Le prétraitement au CO₂ supercritique
 7.1.5 La solubilisation de la matrice bitume par solvant organique et séparation des sels
 7.1.6 Comparaison des analyses multicritère pour la brique technologique pré-traitement
 7.2 LES METHODES DE TRAITEMENT DES ENROBES DE BOUES BITUMEEES
7.2.1 Traitement des sels par dénitrification

7.2.2 Traitement de la matrice bitume

7.2.2.1 La combustion classique

7.2.2.2 Le traitement par vaporéformage

7.2.2.3 Procédés en milieu aqueux sous pression ou supercritique

7.2.3 Traitement des sels et de la matrice organique par incinération-vitrification

7.2.3.1 Le procédé SHIVA

7.2.3.2 Le procédé PIVIC

7.2.3.3 Discussion sur le traitement des enrobés bitumineux par SHIVA et PIVIC

7.2.4 Comparaison des analyses multicritères pour la brique technologique traitement

7.3 Les méthodes de post-traitement

7.3.1 La cimentation

7.3.2 Vitrification du type In Can Melting

7.3.3 Vibro compaction

7.3.4 Comparaison des analyses multicritère pour la brique technologique post-traitement

8. Les filières de traitement

8.1 Evaluation multicritère des filières

8.2 Description des filières

8.2.1 Filière 1 : incinération-vitrification

8.2.2 Filière 2 : combustion classique ou vaporéformage d’un déchet solide

8.2.3 Filière 3 : combustion classique d’un déchet liquide après séparation des sels et de la matrice organique

8.3 Resultat de l’analyse multicritères des filières

9. Conclusion

10. Annexe : Caractéristiques physiques des colis de déchets bitumineux

10.1 Domaines de compositions des futs d’enrobés de boues bitumées produits à la STEL-MARCOULE

10.2 Domaines de compositions des futs d’enrobés de boues bitumées produits à la STE-LA HAGUE

11. References bibliographiques
LISTE DES FIGURES

Figure 1 : Logigramme des 3 briques technologiques constituant les différentes filières .. 9
Figure 2 : Schéma du four de fusion de l’installation Zwilag (Suisse) ... 16
Figure 3 : Vue du procédé complet d’incinération de Zwilag (Suisse) .. 17
Figure 4 : Schéma du procédé de l’installation PLUTON (Russie) ... 19
Figure 5 : Schéma de l’installation de traitement plasma de KOZLODUY (Bulgarie) .. 21
Figure 6 : Vis d’alimentation des déchets solides préalablement broyés ... 22
Figure 7 : Schéma de principe du procédé THOR de vaporéformage de déchets radioactifs, Studsvik Inc. (Etats-Unis) ... 25
Figure 8 : Incinérateur CENTRACO-SOCODEI ... 26
Figure 9 : Logigramme des 3 briques technologiques constituant les différentes filières 27
Figure 10 : Schéma simplifié du procédé de reprise des bitumes de l’Usine UP1 de Marcoule (donné à titre indicatif) .. 29
Figure 11 : Représentation schématique du procédé de broyage cryogénique étudié pour le traitement des déchets de l’atelier ATPu (CEA Cadarache) ... 31
Figure 12 : (a) Représentation schématique du procédé de découpe par jet d’Azote liquide (NitroJet® ou NiThrow®) ; (b) Essai de découpe de bitume (NiThrow®) ... 32
Figure 13 : Illustration de l’analyse multicritère des procédés de pré-traitement .. 37
Figure 14 : Représentation schématique de la méthode de traitement des sels d’enrobés de bitume japonais visant à la dénitration (D’après K. Irisawa et al., Personal communication) ... 39
Figure 15 : Relâchement des espèces Nitrate (NO₃⁻) et Nitrite (NO₂⁻) dans la solution de lixiviation (eau pure) .. 40
Figure 16 : Schéma de principe de l’incinérateur CENTRACO de SOCODEI .. 41
Figure 17 : Schématisation du procédé SHIVA (France) .. 47
Figure 18 : Schématisation du procédé PIVIC (France) ... 48
Figure 19 : Illustration de l’analyse multicritère des procédés de traitement des fûts d’enrobés bitumineux 52
Figure 20 : Méthodologie pour le développement d’une formulation cimentaire pour le conditionnement de déchets ... 54
Figure 21 : Schéma de principe de la technologie In Can Melter .. 55
Figure 22 : Deux utilisations possibles de la vibrocompaction pour la fabrication de colis de déchets cimentés : élaboration de blocs qui sont ensuite mis en conteneurs (gauche), ou vibrocompaction directe dans le conteneur (droite) ... 56
Figure 23 : Illustration de l’analyse multicritère des procédés de post-traitement .. 58
Figure 24 : Logigramme de la filière 1 incinération-vitrification .. 60
Figure 25 : Exemple de logigramme de la filière 2 (combustion d’un déchet solide) .. 61
Figure 26 : Exemple de logigramme de la filière 3 (combustion d’un déchet liquide) .. 63
Figure 27 : Illustration de l’analyse multicritère des filières de traitement des fûts d’enrobés bitumineux 65
Figure 28 : Les différents types de sels utilisés pour co-précipiter les radionucléides au cours des 5 périodes industrielles (REF- 2). ... 70
Figure 29 : Ensemble des composés chimiques mis en œuvre lors des opérations de fabrication des colis d’enrobés de boues bitumées produits à la STEL Marcoule (REF- 3) entre 1966 et 1995. 72
LISTE DES TABLEAUX

Tableau 1 : Caractéristiques du bitume 70/100. ... 12
Tableau 2 : Composition moyenne des 200 tonnes / an de déchets traités à Zwilag. 15
Tableau 3 : Chiffres de production lors des campagnes de traitement de déchets de faible activité dans l'installation Zwilag (Suisse). .. 17
Tableau 4 : Types de déchets traités par l'installation PLUTON (Russie). 18
Tableau 5 : Typologies des déchets et caractéristiques radiologiques correspondantes devant être traitées sur l'installation d'incinération par torche plasma de KOZLODUY (Bulgarie). 20
Tableau 6 : Rejets gazeux radioactifs de l'installation PMS de KOZLODUY comparés à ceux des installations CILVA et ZWILAG... 23
Tableau 7 : Emissions de polluants des installations de traitement plasma de déchets de faible activité à vie courte... 23
Tableau 8 : Synthèse à l'international des installations de traitement thermique par torche à Plasma de déchets TFA-FMAVC. ... 24
Tableau 9 : Analyse multicritère des procédés de pré-traitement (SO : Sans Objet) 37
Tableau 10 : Comparaison des milieux CO2 supercritique et H2O supercritique. 45
Tableau 11 : Analyse multicritère des procédés de traitement 51
Tableau 12 : Analyse multicritère des procédés de post-traitement 57
Tableau 13 : Variantes de la filière 2 ... 60
Tableau 14 : Variantes de la filière 3 ... 62
Tableau 15 : Analyse multicritères des filières ... 64
Tableau 16 : Activités des colis d'enrobés de boues bitumées pour les colis de la STEL Marcoule produits avant 1995 les valeurs correspondent aux activités déclarées au 01/01/2013. Les activités indiquées pour les colis STEL Marcoule depuis 1995 (ainsi que STE2 et STE3 produits à La Hague) correspondent aux activités à la date de production des colis. ... 69
Tableau 17 : Teneurs massiques en composés principaux des différentes familles d'enrobés de boues bitumées produits à la STEL Marcoule. ... 71
Tableau 18 : Compositions des enrobés de bitumes STE2 et STE3 produits à la STE de La Hague. 76
1. INTRODUCTION

Au titre de l’article 48.1 de l’arrêté PNGMDR 2016-2018, il est demandé que « Après avis de l’ASND et de l’ASN sur le rapport CEA remis en 2015 sur l’option de traitement thermique des enrobés bitumineux, le CEA poursuit les études de recherche et développement relatives aux modes de traitement et de conditionnement des enrobés bituminés (FA-VL et MA-VL), combinant notamment des procédés chimiques et thermiques. Pour le 30 juin 2018, le CEA remet aux ministres chargés de l’énergie, de la sûreté nucléaire et de la défense un rapport d’avancement de ces travaux »

Le présent rapport PNGMDR synthétise l’état d’avancement des travaux sur des scénarios prospectifs de traitement et conditionnement d’environ 72000 colis d’enrobés de boues bitumées actuellement entreposés sur les sites du CEA-Marcoule et d’Orano La Hague.

2. CONTEXTE DE LA DEMANDE

L’étude présentée ici vient compléter plusieurs dossiers d’évaluation produits antérieurement par le CEA (REF-1).

Les conclusions du GP, en amont de l’avis ASN, sont les suivantes : « les groupes permanents considèrent qu’il existe, en cas d’incendie ou d’élévation de température, un risque d’emballage de réactions exothermiques dans ces colis qui pourrait entraîner un rejet important d’activité dans l’environnement. Aussi les groupes permanents estiment que les options de conception présentées dans le DOS ne permettent pas en l’état de démontrer la sûreté du stockage de ces colis dans l’installation Cigéo. A ce stade, il existe deux voies envisageables pour le devenir des enrobés bitumineux déjà conditionnés :

1/ le développement à une échelle industrielle d’un procédé assurant la neutralisation de la réactivité chimique des enrobés

2/ des évolutions de concepts du projet Cigéo permettant d’exclure le risque d’emballage de réactions exothermiques en cas d’incendie ou d’élévation de température.

La faisabilité de chacune de ces deux voies ne pouvant pas être aujourd’hui appréciée, les groupes permanents estiment qu’un processus doit être mis en place en vue de déterminer, en relation avec l’ensemble des parties prenantes, l’orientation à retenir pour assurer un niveau de sûreté acceptable, et ce avant le dépôt de la DAC »

L’ASN a formulé son avis sur le DOS-Cigéo avec une réserve concernant les déchets bitumés. L’ASN estime que « la recherche de la neutralisation de la réactivité chimique des colis de déchets bitumés doit être privilégiée. En
parallèle, des études visant à modifier la conception pour exclure le risque d’emballage de réactions exothermiques doivent être conduites. En tout état de cause, la caractérisation dans les meilleurs délais de ces colis de déchets bitumés par leurs producteurs est un préalable indispensable.

3. LA PROBLEMATIQUE

Le stockage des colis de boues bitumées dans Cigéo soulève notamment la problématique du risque incendie, qui peut être lié soit à la réactivité thermique des sels soit au caractère inflammable de la matrice bitume.

Le questionnement sur la réactivité chimique des sels se pose essentiellement dans le cas d’un scénario considérant une élévation de température externe au colis qui amorcerait des réactions chimiques exothermiques entre les sels, conduisant à son tour à une élévation de température au sein du colis de bitume. En effet, les sels contenus dans les enrobés peuvent être réactifs avec l’augmentation de la température, et dans certaines plages de températures. En particulier, certaines associations de sels\(^1\) sont responsables au premier ordre de la réactivité thermique du mélange à une certaine température – en particulier les sels nitrates.

De fait, nous sommes confrontés à la problématique suivante :

- S’agit-il de supprimer la réactivité des sels de nitrates qui, sous certaines conditions de sollicitation thermiques extrêmes et incidentelles, peuvent générer des réactions exothermiques, ou s’agit-il de supprimer la matrice bitumineuse car potentiellement inflammable dans certaines conditions de sollicitations thermiques incidentelles et extrêmes ?

- La réponse à cette question varie-t-elle en fonction de la composition du déchet ?

La réponse à ces deux questions permettra ensuite de trancher d’autres questions plus pratiques qui se posent sur les techniques de passivation du déchet (chimique ou thermique).

Dans le cas d’un traitement partiel, qui permettrait de séparer puis de détruire la matrice bitume, conduisant ainsi à stocker un déchet contenant presque exclusivement des sels, les problématiques de ce déchet se ramènent alors à celles déjà traitées pour des colis contenant des sels.

Dans le cas d’un traitement partiel qui permettrait de détruire les seuls sels sans toucher à la matrice bitume, la problématique de ces déchets se résume au maintien du caractère confinant et à la démonstration de sûreté en phase exploitation sur des déchets présentant un caractère inflammable.

\(^1\) La nature des sels contenus dans les enrobés bitumineux a évolué au fil de l’historique de production : carbonates, sulfates, nitrates
Enfin, un traitement total des boues bitumées conduisant à une destruction des composés organiques et à une transformation des sels en oxyde, avec incorporation des sels dans une matrice inerte, permettrait de s'affranchir de cette problématique de risque incendie en condition d'exploitation réversible du stockage.

Pour répondre à cette problématique, un groupe de travail (GT) piloté par le CEA réunissant des experts du CEA, d’ORANO, d’EDF et de l’ANDRA a mené des premières réflexions sur des solutions de neutralisation de la réactivité des enrobés bitumineux. Ce rapport présente l’état d’avancement de ces réflexions.

4. LA DEMARCHE

4.1 LE SYSTEME ETUDIE

Le système considéré est le colis de déchets constitué d’une enveloppe métallique d’une part (le fût), et du déchet contenant les sels enrobés dans une matrice bitume (enrobé bitumineux), d’autre part. Ce système devra subir un certain nombre d’opérations pour aboutir à un produit qui est un nouveau colis de déchets évacuable en site de stockage :

- le pré-traitement consiste à rendre le déchet (sels enrobés de bitume dans son enveloppe) compatible avec l’opération de traitement du déchet.
- le traitement neutralise la réactivité du déchet (sels de co-précipitation et/ou matrice bitume),
- le post-traitement est l’opération de conditionnement du déchet produit, stable et à évacuer.

Chacune de ces étapes peut être réalisée de différentes manières, avec des grandes options technologiques différentes.

Une filière de gestion se définit dès lors comme toute combinaison de trois briques technologiques, tel que présenté dans la Figure 1 ci-après.

![Figure 1 : Logigramme des 3 briques technologiques constituant les différentes filières](image)

Le GT s’est tout d’abord focalisé sur l’élaboration d’une cartographie des procédés susceptibles de répondre à chacune de ces briques technologiques. Les procédés listés sont exploités dans le domaine du conventionnel ou expérimentés à l’échelle du laboratoire pour une application dans le domaine du traitement de déchets
radioactifs; un état des lieux à l’international de ces procédés de traitement de déchets radioactifs a permis d’enrichir la liste des procédés potentiels.

Dans un second temps, sous un angle industriel, une analyse multicritères de chacun de ces procédés a été effectuée afin d’aboutir à un diagramme fonctionnel simplifié de différentes filières de traitement des colis de déchets bitumés et de conditionnement des déchets induits et d’identifier les plus prometteuses pour une mise en œuvre industrielle.

Quelques filières, qui apparaissent plus prometteuses ou moins problématiques, feront dans les prochains mois l’objet d’une analyse technico-économique.

4.2 L’ANALYSE MULTICRITERES

L’analyse multicritères conduite par le GT est fondée sur l’analyse des meilleures techniques disponibles (MTD) telle que décrite dans l’arrêté INB de 2012 (art. 6.1), pour la gestion des déchets.

Les 11 critères retenus sont les suivants :

- Sûreté : évaluation préliminaire de la complexité à prévenir les incidents et les accidents et d’en réduire les conséquences sur l’environnement,
- Criticité (mesures nucléaires) : évaluation préliminaire de la complexité à gérer la criticité à travers le procédé, notamment au travers des mesures nucléaires à réaliser dans le procédé,
- Sécurité : évaluation préliminaire de la complexité à gérer la sécurité du procédé comme, par exemple, le risque « équipement sous pression », la manipulation de produits dangereux, les risques d’explosion,
- Radioprotection : évaluation préliminaire de la complexité à prévenir ou à réduire à un minimum l’impact radiologique global des émissions et sur les opérateurs (Principe ALARA),
- Environnement : évaluation préliminaire de la complexité à prévenir ou à réduire à un minimum les risques sur l’environnement (principe de réduction, compensation ou assainissement des émissions chimiques en particulier),
- Réduction du volume de déchets : évaluation préliminaire de la capacité du procédé à réduire le volume final des déchets,
- Déchets induits : évaluation préliminaire de l’impact du procédé sur la production de déchets d’exploitation additionnels,
- Flux industriels : évaluation préliminaire de la capacité du procédé ou de la filière complète en termes de cadence de traitement,
- Exploitabilité/maintenabilité : évaluation préliminaire de la complexité d’exploitation et de maintenabilité du procédé,
• Approvisionnement : évaluation préliminaire de la contrainte d’approvisionnement en fluides, matières ou utilités, pour le fonctionnement du procédé,
• Disponibilité : évaluation préliminaire de la durée nécessaire pour atteindre la maturité industrielle du procédé.

Des notes ont été données à chacun de ces critères pour chaque procédé :

<table>
<thead>
<tr>
<th>Note</th>
<th>Signification</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 rédhibitoire *</td>
<td>inaccessible ; cette note est rédhibitoire pour le procédé.</td>
</tr>
<tr>
<td>1 très difficile</td>
<td>1>20 ans</td>
</tr>
<tr>
<td>4 Difficile</td>
<td>4 entre 10 et 20 ans</td>
</tr>
<tr>
<td>7 facile</td>
<td>7 < 10 ans</td>
</tr>
<tr>
<td>10 très facile</td>
<td>10 < 5 ans</td>
</tr>
</tbody>
</table>

Dans le cas du critère disponibilité l’échelle de notation est la suivante :

La performance du procédé n’a pas été retenue comme critère. En effet, chaque brique a été évaluée en considérant que la performance requise pour chacune pouvait être atteinte. Le niveau de complexité pressenti pour mettre au point un procédé respectant les exigences, se traduit par le critère de disponibilité.

Les procédés ont été notés par chacun des experts du GT. Les moyennes des notes de chaque évaluateur ont été calculées par critère et par procédé. La synthèse de ces évaluations est présentée et discutée pour chacune des briques technologiques.

5. DONNEES D’ENTREE SUR LES COLIS BITUMES

Les colis d’enrobés de boues bitumées sont issus d’un procédé de fabrication industriel en 3 étapes principales :

1. La collecte, la réception et le stockage des effluents classés par catégorie selon leur activité radiologique spécifique et leur nature chimique,
2. La décontamination de ces effluents, basée sur l’ajout de réactifs spécifiques (sels chimiques) qui, à partir de phénomènes chimiques de précipitation, d’adsorption ou d’échange ionique, conduisent à une insolubilisation sélective des radionucléides présents dans l’effluent à traiter. Cette insolubilisation génère des boues, qui sont ensuite filtrées.
3. Le conditionnement sous forme solide des résidus de traitement de décontamination (boues) contenant la majorité de l’activité radiologique, par incorporation à chaud dans du bitume. Le bitume sèche, agglomère enrobe et confine les sels chimiques. L’eau est éliminée par évaporation lors de l’opération.

Caractéristiques physico-chimiques de la matrice bitume

Chaque bitume fabriqué est caractérisé par son grade et classé selon ses caractéristiques physiques. Plus le grade est élevé et plus le bitume est mou (plus faible viscosité). Les normes que l’on retrouve usuellement sont les grades 180/220, 70/100, 40/50…. Ces valeurs correspondent à un indice de pénétrabilité (I.P.) et sont obtenues au moyen d’un test normalisé qui est la pénétrabilité d’une aiguille. Celui-ci représente l’enfoncement en dixième de millimètre d’une aiguille calibrée, au bout de 5 secondes et sous une charge de 100 g. Les mesures sont effectuées à 25°C. Certains bitumes peuvent être oxydés pour augmenter leur dureté.

À la STEL de Marcoule, deux types de bitume ont été utilisés : 70/100 et 80/100. Les enrobés de bitume actuellement fabriqués sont du type 70/100. Quelques caractéristiques physico-chimiques de ce bitume sont listées dans le Tableau 1 et rappelées au paragraphe 7.1.5.

<table>
<thead>
<tr>
<th>Essais</th>
<th>Unités</th>
<th>Spécifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pénétration à 25°C</td>
<td>1/10 mm</td>
<td>70/100</td>
</tr>
<tr>
<td>Point de ramollissement</td>
<td>°C</td>
<td>43 – 51</td>
</tr>
<tr>
<td>Point de fragilité Fraass²</td>
<td>°C</td>
<td>≤ -10</td>
</tr>
<tr>
<td>Solubilité dans le toluène</td>
<td>%</td>
<td>≥ 99</td>
</tr>
<tr>
<td>Densité à 25°C</td>
<td>g.cm⁻³</td>
<td>1,02</td>
</tr>
<tr>
<td>Teneur en asphaltènes</td>
<td>%</td>
<td>23,6</td>
</tr>
</tbody>
</table>

Tableau 1 : Caractéristiques du bitume 70/100.

² Le point de fragilité Fraass est un indicateur permettant de caractériser la fragilité du bitume à basse température. Plus le point Fraass est élevé, plus le bitume est fragile.
D’un point de vue chimique, le bitume est un corps hydrocarboné, composé de 80 à 87 % en masse d’atomes de carbone (en moyenne 83 %), de 8 à 12 % d’atomes d’hydrogène (en moyenne 10 %) et d’hétéroatomes. L’oxygène, l’azote et surtout le soufre représentent globalement, en moyenne 7 % du bitume. D’autres éléments, tels que le fer, le vanadium, le nickel, l’aluminium et le silicium sont aussi présents dans sa composition, à l’état de traces. Le nombre important de molécules différentes constituant le bitume rend impossible la détermination précise de sa composition chimique. **En première approximation, la composition du bitume est constituée par 2 familles d’hydrocarbures : les maltènes (huile noire très visqueuse) et les asphaltènes.**

Les **maltènes** sont, par définition, solubles dans un hydrocarbure de faible poids moléculaire généralement le n-heptane, tandis que les **asphaltènes**, par définition, précipitent dans ce solvant mais sont solubles dans le toluène. A ces deux familles s’ajoutent parfois 0 à 2 % de carboïdes et 0 à 0,2 % de carbènes.

Les **asphaltènes**, qui représentent généralement entre 5 et 30 % du bitume, forment la partie insoluble du bitume dans les n-alcanes (heptane ou pentane).

Les compositions physico-chimiques des enrobés bitumineux (sels + matrice organique) produits à Marcoule et à La Hague sont rappelées en annexe (§10).

6. **ETAT DE L’ART A L'INTERNATIONAL SUR LES PROCÈDES DE TRAITEMENT THERMIQUE DE DECHETS RADIOACTIFS**

La France est le premier détenteur de fûts d’enrobés de boues bitumées, devant la Russie et le Japon. Outre ces pays, la Belgique, les pays scandinaves (Finlande, Suède et Danemark) et baltes (Lituanie) et des pays d’Europe centrale (Slovaquie, République Tchèque) ont produit des déchets bitumés. A ce jour, seules la Finlande et la Suède ont tranché la question du stockage final en les admettant dans leur stockage en profondeur. Le Japon privilégie le stockage direct en profondeur, et reste attentif aux positions française et russe.

A ce jour, aucun pays détenteur d’enrobés de bitume n’a industrialisé de procédé de traitement pour ce type de déchets.

Ce chapitre est consacré à la présentation des technologies et des procédés industriels de traitement thermique3, exploités pour des déchets radioactifs incinéreables.

3 Une partie de cet état des lieux a fait l’objet d’un rapport publié par l’AIEA en 2006. Par ailleurs, le projet européen THERAMIN (2017-2020) met à jour cet exercice, pour le traitement de divers déchets (boues, REI, déchets technologiques …).
6.1 GÉNÉRALITÉS SUR LE TRAITEMENT THERMIQUE DE DÉCHETS

La dégradation thermique d’un déchet organique peut se décomposer essentiellement en 3 étapes successives :

1. Etape de séchage et dégazage : sous l’effet d’un apport de chaleur, les composés volatiles tels que les hydrocarbures et l’eau se volatilisent entre 100 et 300°C.

2. Etape de Pyrolyse et gazéification : la pyrolyse est une étape avancée de décomposition qui transforme la matière organique solide en phase gazeuse. Une pyrolyse classique, en l’absence d’agents oxydants généralement entre 250 et 700 °C, génère des gaz de pyrolyse contenant des hydrocarbures lourds et légers, de l’hydrogène, du CO, … Dans le cas particulier du vaporeformage, cette étape est réalisée avec ajout de vapeur d’eau, également de CO/CO₂ ou d’O₂ pour piloter la dégradation, à des températures comprises entre 500 et 1000°C (bien que pouvant être opérée jusqu’à 1600°C), pour favoriser une composition de gaz de pyrolyse riche en H₂ et CO et pauvre en hydrocarbures. En plus de la forte température, un apport en vapeur d’eau et oxygène contribuent à la réaction de gazéification.

3. L’oxydation – Les gaz combustibles générés dans les étapes précédentes sont oxydés, de façon différente selon la méthode d’in cinération retenue, à des températures comprises entre 800 et 1450°C.

Ces différentes étapes individuelles se chevauchent en partie dans l’espace d’un équipement d’in cinération et dans le temps, et s’influencent entre elles. Lors d’une incinération en milieu oxydant, les principaux constituants dans le gaz produit sont de la vapeur d’eau, de l’azote, du CO₂ et de l’O₂. Selon les processus de décomposition des matériaux à incinérer, et des conditions de fonctionnement du procédé, des composés CO, HCl, HF, HBr, Hg, HI, NOx, SOx, VOCs, PCB, dioxines et composés volatils de métaux lourds peuvent être formées. Ces substances sont transférées du déchet entrant aux gaz produits et aux cendres volantes (poussières). Un résidu solide (scories) est également formé. A titre d’exemple, dans le cas des incinérateurs d’ordures ménagères, les scories représentent environ 20–30% massiques du déchet entrant, pour quelques pourcents massiques de cendres volantes. Le ratio dépend au premier ordre de la charge minérale contenue dans le déchet entrant.

Pour une combustion oxydante performante, l’apport en quantité suffisante d’oxygène dans le procédé est essentiel (typiquement 1.2 à 2,5 fois ce qui est apporté par l’air). La combustion n’est en fait qu’une étape dans un procédé d’incinération. Les incinérateurs sont constitués d’un ensemble complexe d’étages techniques interconnectés : dispositif de mise en forme et d’alimentation du déchet, dispositif de combustion du déchet, dispositif de traitement des gaz (filtration des fumées) et des imbrulés (postcombustion), dispositif de récupération des résidus solides (cendres).
Parmi les technologies de traitement thermique, des systèmes de traitement par torche à plasma ont été étudiés, et dans certains cas déployés par des opérateurs industriels, pour la destruction de certains déchets radioactifs solides et liquides. Il s’agit essentiellement de procédés dédiés à des déchets de catégorie TFA et FMA-VC.

Les torches à plasma peuvent être soit :

- A arc transféré ; la torche transfère l’énergie électrique de la cathode vers le matériau fondu utilisé comme anode ; l’énergie est transférée directement vers le déchet qui est chauffé à très haute température ;
- A arc non-transféré ou arc soufflé ; à titre d’exemple, la torche d’Europlasma contient deux électrodes métalliques tubulaires séparées par une chambre ; l’arc électrique entre l’anode et la cathode ionise et chauffe à haute température le gaz d’injection de la torche qui est dirigé vers le déchet.

Les conditions de fonctionnement, via le gaz plasmagène, peuvent être inertes (sous Ar ou N₂), ou oxydantes (air ou O₂ pur). La durée de vie des électrodes, dépendant de la puissance de la torche, est un point sensible et varie de quelques centaines à plusieurs milliers d’heures.

Les installations de traitement thermique en fonctionnement ou à l’étude, dont certaines mettant en œuvre la technique de torche à plasma, sont décrites ci-après.

6.2 INSTALLATION ZWILAG (SUISSE)

Le procédé d’incinération-vitrification à four rotatif développé par Retech a été implanté notamment en Suisse pour sa plus grosse application.

L’installation ZWILAG a été mise en service en mai 2004 avec une période d’essais de 5 ans. En septembre 2009, l’IFSN (l’Inspection Fédérale de la Sécurité Nucléaire) a donné son autorisation pour une exploitation illimitée, destinée au traitement à très hautes températures des déchets faiblement radioactifs (Tableau 2) provenant des hôpitaux et des cinq tranches nucléaires suisses (Beznau 1 et 2, Gösgen, Leibstadt et Muhleberg). Les déchets ultimes seront évacués à terme en stockage géologique profond.

Tableau 2 : Composition moyenne des 200 tonnes / an de déchets traités à Zwilag

<table>
<thead>
<tr>
<th>Composition</th>
<th>Quantité traitée (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Déchets combustibles</td>
<td></td>
</tr>
<tr>
<td>Déchets mixtes (plastiques, PVC, ...)</td>
<td>90</td>
</tr>
<tr>
<td>Déchets putréfiably</td>
<td>2</td>
</tr>
<tr>
<td>Huiles et solvants</td>
<td>1,2</td>
</tr>
<tr>
<td>Filtres de ventilation</td>
<td>2,3</td>
</tr>
<tr>
<td>Débris, bones</td>
<td>44,5</td>
</tr>
<tr>
<td>Résines échangeuses d'ions</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
</tr>
<tr>
<td>Déchets incombustibles</td>
<td></td>
</tr>
<tr>
<td>Résines</td>
<td>50</td>
</tr>
<tr>
<td>Total</td>
<td>200</td>
</tr>
</tbody>
</table>
Le procédé de traitement de ZWILAG est constitué d’une torche à plasma à arc transféré de 1500 kW, d’une chambre de post-combustion au propane, d’un système d’alimentation horizontal des déchets admettant des fûts métalliques entiers de 200 litres (jusqu’à environ 40 GBq/fût) ainsi que d’un dispositif de traitement des fumées très élaboré.

Pendant l’alimentation en déchets, le four est chauffé par la torche à plasma ; le gaz d’allumage est l’hélium et le gaz utilisé lors du traitement est l’azote. Les fûts de 200 litres de déchets, chargés horizontalement dans l’installation, sont tronçonnés automatiquement par un brûleur au propane et les déchets tombent dans le bain de scories en fusion ; les matériaux inorganiques sont fondus et transformés en scories ; les composés organiques sont vaporisés et dirigés vers la chambre de post-combustion. Les forces centrifuges du creuset rotatif permettent, durant la phase de traitement, de retenir les scories fondues éloignées du trou de coulée du four.

Jusqu’à 5 fûts de déchets sont fondu à la suite et les scories sont chauffées pendant plusieurs heures (environ 1 fût/h est traité). Quand la scorie est devenue homogène, la coulée des scories vers la chambre de collecte est réalisée ; elle est obtenue en débouchant le trou de sortie et en diminuant la vitesse de rotation du four. Le lingot est refroidi pendant 24 heures. Après oxydation complète dans la chambre de post-combustion secondaire, les gaz émis sont transférés dans le système de traitement des gaz à savoir :

- Traitement physique par voie humide : trempe, lavage acide, filtration électrostatique et HEPA,
- Puis traitement chimique par voie humide : lavage basique des gaz pour éliminer les acides et les dioxydes de soufre.
- Les oxydes d’azote sont détruits par le système de réduction catalytique De-NOx.

![Schéma du four de fusion de l’installation Zwilag (Suisse).](image-url)
Figure 3 : Vue du procédé complet d’incinération de Zwilag (Suisse).

Actuellement, l'installation de ZWILAG traite industriellement en moyenne annuelle des déchets radioactifs à raison de :

- deux campagnes de 10 semaines par an,
- 180 tonnes ou environ 900 fûts de 200 litres par campagne,
- 200 kg/h de déchets incinérables ou 300 kg/h de déchets fusibles,
- 140 coulées par campagne.

A titre d'exemple, les volumes traités au cours de campagnes récentes sont présentés dans le Tableau 3. En fin 2013, 1300 tonnes (8000 fûts) de déchets FMA-VC ont été traités. Le facteur moyen de réduction de volume est de 4 ; toutefois dans le cas de l’introduction de déchets pré-compactés conduisant à une première réduction de volume de 3 à 6, il peut être de 18 par rapport au déchet brut initial.

<table>
<thead>
<tr>
<th>Date</th>
<th><12/2009</th>
<th>2012 (1 an)</th>
<th>2015 (du 7/04 au 26/06)</th>
<th>2016 (12/09 au 16/12)</th>
<th>2017 (18/04 au 7/07)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nombre fûts traités</td>
<td>4000 ou 690 tonnes</td>
<td>1461</td>
<td>631</td>
<td>771</td>
<td>623</td>
</tr>
<tr>
<td>Nombre fûts de déchets produits</td>
<td></td>
<td>339</td>
<td>144</td>
<td>147</td>
<td>132</td>
</tr>
</tbody>
</table>

Tableau 3 : Chiffres de production lors des campagnes de traitement de déchets de faible activité dans l'installation Zwilag (Suisse).
Concernant l’exploitation de l’installation, l’exposition du personnel lors des opérations de traitement de 200 fûts est égale à 1,47 homme.mSv (donnée de l’année 2005). Elle est égale à 1,73 homme.mSv lors des opérations de maintenance des équipements, qui se réalisent par intervention au contact.

6.3 INSTALLATION PLUTON (RUSSIE)

SIA « Radon » a développé la technologie de traitement par plasma des déchets radioactifs sur une installation pilote dénommée « Pyrolysis » ayant une capacité de 50 kg/h, puis sur une installation industrielle dénommée « PLUTON » ayant une capacité de 250 kg/h.

En 2007, l’institution « Federal Service for Ecological, Technological and Nuclear Supervision » de la Fédération de RUSSIE a délivré la licence à SIA « Radon » de MOSCOU pour traiter dans l’installation PLUTON des déchets de faible et moyenne activité à vie courte. La mise en service actif a été obtenue en janvier 2008.

La composition moyenne des déchets radioactifs traités est rappelée dans le Tableau 4, et leurs spécifications radioactives d’entrée dans l’installation sont les suivantes :

- Emetteurs βγ < 3,7 \times 10^6 Bq/kg,
- Emetteurs α < 2,2 \times 10^5 Bq/kg.

![Tableau 4](image)

Tableau 4 : Types de déchets traités par l’installation PLUTON (Russie).
Le procédé utilise les équipements suivants (Figure 4) :

- Un four à cuve en matériaux réfractaires et isolants contenu dans un boîtier en acier,
- Dans la chambre de fusion deux torches à arc non-transféré de type SIA « Radon », d’une puissance de 100-150 kW, fournissant une température de 1500-1800 °C ; l’air comprimé est utilisé comme gaz de formation du plasma,
- Un convoyeur à déchets dans l’unité de chargement en partie haute du four,
- Un canal de coulée des scories dans des conteneurs métalliques pour refroidissement,
- Une chambre de post-combustion des gaz de traitement, chauffée par torche à plasma à une température de 1100 °C,
- Un système de traitement des gaz classique (trempe à 300°C, filtre à manches, échangeur de chaleur, lavage des gaz à la solution alcaline, filtres HEPA).

Figure 4 : Schéma du procédé de l’installation PLUTON (Russie).

Les paquets de déchets sont introduits en haut de l’installation, descendent par gravité, puis sont chauffés et séchés par les gaz de traitement ; au milieu du four, les déchets subissent une étape de destruction par pyrolyse en absence d’oxygène. Les scories produites dans l’installation PLUTON sont de structure voisine d’un verre riche en silice et alumine.
6.4 INSTALLATION DE TRAITEMENT DES DECHETS DE KOZLODUY (BULGARIE)

Initié en 2009, une installation est en phase finale de construction dans le bâtiment auxiliaire n°2 de la Centrale Nucléaire de KOZLODUY en Bulgarie. Elle est réalisée par une Joint-Venture entre Iberdrola Ingéniera y Construccion S.A.V. et Belgoprocess N.V., dans le cadre d’un contrat d’ingénierie, d’approvisionnement des équipements et de construction. Le contrat est financé à 70 % par des fonds européens de l’EBRD (European Bank for Reconstruction and Development), et à 30 % par le gouvernement bulgare. Le retour d’expérience de l’exploitation de l’installation ZWILAG a été utilisé pour concevoir l’installation en Bulgarie.

Les déchets, difficiles à trier et devant être détruits par le procédé, sont les suivants :

- Déchets organiques en sacs,
- Déchets pré-compactés : mélanges de matériaux organiques et inorganiques en fûts en acier de 200 litres,
- Déchets super-compactés (organique, bois, béton),
- Déchets liquides tels que des huiles,
- Résines échangeuses d’ions usées,

Les niveaux d’activités radiologiques acceptés sont de 3,23x10^5 Bq/kg (^{60}Co = 57%, ^{137}Cs = 20%, autres = 23%) (Tableau 5), soit d’un facteur 10 à 100 fois inférieur à ceux des déchets traités sur l’installation de Zwilag et PLUTON.

Tableau 5 : Typologies des déchets et caractéristiques radiologiques correspondantes devant être traitées sur l’installation d’incinération par torche plasma de KOZLODUY (Bulgarie).
L’installation PMF (Plasma Melting Facility, Figure 5) est équipée d’une torche à plasma à arc non transféré d’une puissance supérieure à 500 kW (5 000°C), d’un four fixe basculant, d’un système d’alimentation avec deux étages de broyeur, d’un système de traitement des fumées basé sur celui de l’incinérateur CILVA de BELGOPROCESS et d’une chambre de récupération des scories de conception identique à celle de l’installation ZWILAG. Elle est conçue pour un débit d’entrée de 65 kg/h afin de traiter 250 tonnes/an de déchets.

Figure 5 : Schéma de l’installation de traitement plasma de KOZLODUY (Bulgarie).

L’installation de traitement des déchets par torche à plasma a été construite en utilisant la technologie EUROPLASMA pour ce qui est de la torche à arc non transféré de 500 kW et du four.
Le système d’alimentation est constitué d’un broyeur primaire, d’un broyeur secondaire et d’une vis d’alimentation sous atmosphère d’azote (Figure 6) ; la force motrice du système permet d’accepter des fûts de 200 litres.
Figure 6 : Vis d’alimentation des déchets solides prélablement broyés.

Dans la chambre secondaire, les gaz de synthèse et les hydrocarbures contenant du chlore et du soufre sont transformés, par oxydation sous excès d’air à l’aide d’une torche, en constituants primaires tels que CO₂, H₂O, SO₂ et HCl. Les gaz restent à minima 2 secondes à 850 °C. Le four fonctionne au diesel.

Le système de traitement des fumées est classique et comprend :

- Un bouilleur pour refroidir les gaz,
- Un système de filtration et d’épuration des gaz (filtres à membranes en PTFE et filtres HEPA),
- Une tour de lavage alcalin des gaz pour éliminer HCl et SO₂,
- Des ventilateurs d’extraction des gaz permettant la mise en dépression de l’installation,
- Un système catalytique DeNOx de destruction des NOx,
- Un système de contrôle et de mesure des émissions gazeuses.

Quand la chambre de traitement est pleine, l’alimentation est arrêtée et la coulée des scories débute dans des moules pré-positionnés sous le four ; le moule est refroidi dans la chambre de récupération des scories (Slag Collection Chamber – SCC), placé en fûts de 200 litres puis transporté dans une installation d’entreposage dans l’attente du stockage final.

Le système de traitement des gaz de l’installation d’incinération CILVA de BELGOPROCESS a été utilisé pour définir celui de l’installation PMS de KOZLODUY. Les rejets radioactifs prévus par l’installation PMS sont comparés dans le Tableau 6 à ceux des installations CILVA et ZWILAG, de mêmes débits annuels de traitement de déchets de composition voisine car provenant de centrales nucléaires.

Tableau 6 : Rejets gazeux radioactifs de l’installation PMS de KOZLODUY comparés à ceux des installations CILVA et ZWILAG.

<table>
<thead>
<tr>
<th>Installation</th>
<th>Débit moyen de traitement (t/an)</th>
<th>Rejets annuels autorisés (Bq)</th>
<th>Rejets annuels réels (Bq)</th>
<th>Rejets annuels Paramètres garantis (Bq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CILVA</td>
<td>200</td>
<td>1.10^8</td>
<td>1.10^7</td>
<td></td>
</tr>
<tr>
<td>ZWILAG</td>
<td>200</td>
<td>1.10^9</td>
<td>5.10^7</td>
<td></td>
</tr>
<tr>
<td>KOZLODUY PMS</td>
<td>250</td>
<td></td>
<td></td>
<td>$6.03.10^6$</td>
</tr>
</tbody>
</table>

Tableau 7 : Emissions de polluants des installations de traitement plasma de déchets de faible activité à vie courte.
6.5 Recapitulatif des installations industrielles de traitement de déchets radioactifs par torche à plasma

Le Tableau 8 présente la synthèse des caractéristiques techniques et opérationnelles des installations industrielles de traitement thermique par torche à plasma (Kozloduy, Pluton et Zwilag), dédiées au traitement des déchets radioactifs FMA-VC, de nature très variée et conduisant à la production d’un déchet conditionné sans matière organique. **Il n’existe aucune expérience industrielle connue d’application de cette technologie pour traiter des déchets radioactifs de catégorie FAVL et MAVL, ou HA.**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiales</td>
<td>Organiques, mélanges organiques/inoorganiques, résines, bones, huile 3,23x10^6 Bq/kg</td>
<td>Emetteurs β < 3,7. 10^6 Bq/kg, Emetteurs γ < 2,2.10^5 Bq/kg</td>
<td>Organiques, inorganiques, métaux,…</td>
</tr>
<tr>
<td>Finales</td>
<td>Exempt de toute matière organique et appropriée au stockage et à l’élimination à long terme sans autre traitement</td>
<td>La densité finale entre 2,4 et 2,9 g/cm³</td>
<td>Semi liquides (résidus non métalliques imbibés dans du verre fondu) et métaux fondus.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caractéristique de l’équipement</th>
<th>Plasma</th>
<th>Arc non transféré (2 touches)</th>
<th>Arc transféré</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puissance (kW)</td>
<td>500</td>
<td>100 - 150</td>
<td>1200</td>
</tr>
<tr>
<td>Capacité de traitement (t/a)</td>
<td>250</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>Température (°C)</td>
<td>1100-1500</td>
<td>1500-1800</td>
<td>>1400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance</th>
<th>Flux: 1200-1400 m³/h</th>
<th>Température des gaz résiduels: 250-300°C</th>
<th>Température des gaz (SSC) : 350-380 °C :</th>
</tr>
</thead>
<tbody>
<tr>
<td>L’émission annuelle (Bq)</td>
<td>6.03E+6 (valeur garantie)</td>
<td>environ 5E+5 (valeur cible)</td>
<td></td>
</tr>
<tr>
<td>Réduction du volume</td>
<td>>50 pour les déchets non pré-compactés, >10 pour les déchets pré-compactés</td>
<td>67:1 pour les déchets organiques et inorganiques</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 8 : Synthèse à l’international des installations de traitement thermique par torche à Plasma de déchets TFA-FMAVC.
6.6 LE PROCEDE THOR (ETATS-UNIS)

THOR est un procédé de vaporéformage (décrit au § 7.2.2.2) qui est exploité pour la destruction de déchets irradiés, notamment de résines échangeuses d’ions issues de l’exploitation des réacteurs : le procédé THOR (Thermal Organic Reduction) a été développé et breveté par Studsvik Inc. (Figure 7). En activité depuis 2000 sur le site d’Erwin aux Etats-Unis, ce procédé est principalement destiné au traitement par pyrolyse et vaporéformage de résines échangeuses d’ions des réacteurs américains.

Le cœur du procédé est constitué d’un équipement principal remplissant deux rôles distincts : pyrolyseur puis réacteur de vaporéformage. La pyrolyse de déchets préalablement broyés est conduite autour de 500-600°C. Les résidus de pyrolyse subissent ensuite un vaporéformage en lit fluidisé à une température avoisinant les 800°C.

![Figure 7 : Schéma de principe du procédé THOR de vaporéformage de déchets radioactifs, Studsvik Inc. (Etats-Unis).](image)

6.7 INCINERATEUR CENTRACO, SOCODEI (FRANCE)

Il existe en France un incinérateur de déchets radioactifs de faible activité à vie courte : incinérateur CENTRACO (CTO) de SOCODEI (Figure 8). Installé sur le site de Marcoule, l’incinérateur traite des déchets variés, liquides et solides, organiques ou minéraux dans un système comportant plusieurs chambres de combustion revêtues de réfractaires et chauffées par des brûleurs.
Cette installation, démarrée en 1999, permet de traiter :
- Des solides massifs ou divisés tel que des vêtements, des chiffons, du coton, du latex et des plastiques (comportant de 5 à 12 % de PVC et ayant un pouvoir calorifique moyen de 25 MJ.kg\(^{-1}\));
- Des carcasses animales ;
- Des REI sèches ou hydratées ;
- Des liquides organiques tel que des scintillants ou des solvants (ayant un pouvoir calorifique moyen de 45 MJ.kg\(^{-1}\));
- Des solutions aqueuses contenant ou non des composés organiques et des particules solides ;
- Des huiles usagées (ayant un pouvoir calorifique moyen d’environ 40 MJ.kg\(^{-1}\)).
Le fonctionnement de l’incinérateur est détaillé au paragraphe 7.2.2.1.

7. LES OUTILS DE NEUTRALISATION DE LA REACTIVITE DES DECHETS BITUMINEUX

Pour évaluer les différentes solutions industrielles de neutralisation des déchets bitumineux (réactivité des sels et/ou destruction de la matrice bitume), la méthodologie mise en œuvre par le GT a consisté à définir les filières de gestion. Pour rappel (cf. §4.1), ces filières se définissent comme une combinaison de trois briques technologiques (Figure 9) :

- le **pré-traitement** consiste à rendre le déchet (enrobé de bitume dans son enveloppe) compatible avec l’opération de traitement du déchet.
- le **traitement** neutralise la réactivité du déchet (sels de co-précipitation et/ou matrice bitume),
• **le post-traitement** est l’opération de conditionnement du déchet produit, stable et à évacuer.

Ce découpage n’exclut pas que dans l’établissement d’une filière, deux procédés de pré-traitement ou de post-traitement soient nécessaires pour aboutir au conditionnement du déchet ultime. A contrario, il est possible qu’un procédé de traitement simplifie la filière et exclut une opération de pré-traitement ou de post-traitement (notamment pour, d’une part, se débarrasser de l’enveloppe métallique puis, d’autre part, commencer à séparer la matrice organique et les sels).

Figure 9 : Logigramme des 3 briques technologiques constituant les différentes filières

7.1 LES METHODES ENVISAGEABLES DE PRE-TRAITEMENT DES COLIS D’ENROBES DE BITUME

A la sortie de l’extrudeuse du procédé industriel de bitumage des boues, l’enrobé de bitume est coulé dans un fût métallique (217 ou 223L) constituant ainsi le fût d’enrobé bitumineux (FEB). La matrice bitume présente un fort pouvoir agglomérant. L’enrobé de bitume adhère aux parois du fût métallique, en particulier à température ambiante. Par ailleurs, lors des opérations de reprise de fûts d’enrobés de bitume du CEA (FEB STEL), les FEB sont reconditionnés en surfût en inox avant leur transfert vers dans les installations d’entreposage (EIP). La présence du fût et du surfût est déterminante dans le choix du pré-traitement.

Cinq procédés de pré-traitement sont retenus pour l’évaluation :

- La liqéfaction du bitume par chauffage pour désolidariser le fût métallique de l’enrobé de bitume et permettre une vidange gravitaire du fût ;
- Le cryobroyage pour broyer le fût métallique et/ou l’enrobé de bitume ;
- La découpe par jet d’azote liquide pour découper l’enrobé de bitume ;
- Le CO₂ supercritique permettant de solubiliser la matrice organique et de la séparer des sels ;
• Un solvant organique permettant, tout comme le CO₂ supercritique, de solubiliser la matrice bitume et permettre la séparation des sels et de la phase organique.

Ces cinq technologies sont brièvement décrites avant une comparaison selon l’approche multicritères décrite plus haut.

7.1.1 La Liquéfaction du bitume (séparation enveloppe/bitume)

Le bitume est un matériau thermo-dépendant liquéfiable à chaud. Par chauffage du colis à une température rendant le bitume suffisamment fluide, le mélange sels/bitume peut alors être extrait directement sous forme fondu. La liquéfaction du bitume pur a lieu pour des températures de l’ordre de 150 °C.

Par ailleurs, sans aller jusqu’à la solubilisation complète de la matrice bitume, la viscosité du bitume peut être augmentée en mélange avec un fluxant (terme utilisé lors de l’ajout de produits pétrochimiques) ou un fluidifiant (terme utilisé lors de l’ajout de produits carbochimiques). Cet ajout de fluxant permet d’optimiser la rhéologie des bitumes dans un certain nombre d’applications d’usage courant dans les techniques routières (épandage, enrobage, recyclage …). L’ajout de ces composés conduit au ramollissement du bitume et permet sa mise en œuvre à une température légèrement supérieure à 100 °C. La partie la plus légère du fluxant s’évapore tandis que la plus lourde a pour rôle de plastifier le liant en place.

Applicabilité aux fûts d’enrobés bitumineux

Les propriétés physico-chimiques des mélanges bitumes purs/fluxants sont actuellement utilisées dans le cadre des chantiers d’assainissement et de démantèlement des cuves et qui sont couvertes d’une peau en « bitume » neutrophage, à l’usine UP1 du CEA Marcoule. Les couches de bitume de l’Usine UP1 sont des bitumes purs (au sens, ne contenant pas de sels) d’origines différentes et se présentent sous différentes formes (solide cassant sur le dessus et sous forme de liquide visqueux au-dessous. De plus, ces bitumes sont contaminés par des éléments radioactifs, principalement par les isotopes du plutonium. L’activité massique moyenne des bitumes de UP1 est en moyenne de 25 Bq.g⁻¹ en α et de 82 Bq.g⁻¹ en β/γ, soit une activité massique totale de 107 Bq.g⁻¹.

Le principe du procédé de reprise des couches de bitume des cuves de l’usine UP1 consiste à fluidifier le bitume par la mise en œuvre d’un système de chauffage (Figure 10).

Ce chauffage est assuré par la circulation d’un fluide caloporteur dans un serpentin immergé dans le bitume. La température maximale de chauffage du bitume est de 140 °C. Le bitume sous forme d’un liquide visqueux est alors pompé au moyen d’une pompe à palettes guidées vers une cuve tampon par l’intermédiaire de tuyauteries tracées. L’aspiration du bitume s’effectue à l’aide d’une canne plongée dans le bitume chaud.

4 Fluxant : Agent chimique permettant de diminuer la viscosité du bitume et qui peut à terme durcir dans le liant bitumineux
Un injecteur couplé à un mélangeur est placé en aval de la pompe afin d’ajouter un fluxant (ester de colza) au bitume chaud. Le mélange bitume/fluxant ainsi obtenu est sous forme liquide à la température ambiante. Ce mélange permet également d’éviter la formation ou la reformation de « grumeaux » dans les tuyauteries.

La cuve tampon réceptionnant le mélange bitume/fluxant est munie d’un agitateur et d’un système de chauffage (serpentin alimenté en fluide caloporteur) permettant d’éviter la formation de « grumeaux » de matières bitume. L’agitateur permet de garantir dans les deux cas un fluide homogène dans la cuve (absence de « grumeaux »). Le mélange bitume/fluxant est ensuite mis en fût métallique. L’exutoire final du mélange bitume/fluxant ainsi conditionné est le traitement par incinération à CENTRACO (SOCODEI).

Figure 10 : Schéma simplifié du procédé de reprise des bitumes de l’Usine UP1 de Marcoule (donné à titre indicatif).

L’avantage de la technique par liquéfaction est la simplicité du procédé de mise en température de l’enrobé (chauffage direct). Les inconvénients principaux de cette méthode de pré-traitement sont la nécessité de :

- Maintenir sous forme fondu l’enrobé pour le transfert vers l’étape suivante de traitement et la présence résiduelle de bitume sur la paroi du fût métallique : ajouter un fluxant pourrait permettre d’optimiser cette étape de vidange ;
• Evacuer les fûts métalliques vers un exutoire (CSA ou CIRES après découpe et/ou compactage, ou fusion à Socodei) : la propreté radiologique des fûts à atteindre sera plus ou moins poussée en fonction de l’exigence de l’exutoire ;
• Maîtriser le risque d’auto-échauffement et d’emballage réactionnel, la température nécessaire à la liquéfaction, voisine de 150 °C, conduisant à se rapprocher de celle à laquelle le début de pyrolyse du bitume (200 °C) est observé ;
• Éviter la sédimentation des sels.

A noter que dans le cas des enrobés de bitume, l’utilisation des propriétés physico-chimiques d’un mélange bitume/fluxant et d’un procédé de reprise similaire à celui des bitumes des cuves de UP1 nécessiterait de considérer la présence des sels de co-précipitation enrobés dans la matrice bitume. La comptabilité chimique des sels avec le fluxant devra être démontrée. Le phénomène de sédimentation des sels en fond de fût (du fait de l’élévation de température de l’enrobé) devra être étudié, notamment vis-à-vis du système d’injection dans un incinérateur.

7.1.2 Le Crybroyage
Le procédé de pré-traitement par cryo-broyage a été développé puis utilisé dans l’installation nucléaire ATD-CRYO, faisant partie des ATPu (Ateliers Pu), par le CEA sur le site de Cadarache. Cette installation pilote, dédiée au traitement de déchets technologiques (polymères et matériaux plastiques divers) contaminés en radio-éléments émetteurs alpha, a fonctionné dans les années 80 (Figure 11). Ce procédé consistait à introduire les déchets (fûts entiers de 100 litres) dans un tunnel refroidi à l’azote liquide à une température de -150 °C. Le temps de séjour dans le tunnel était de l’ordre de quelques heures, durée suffisante pour permettre le refroidissement intégral des déchets de manière homogène. A l’issue de cette étape de refroidissement, les déchets basculaient dans un broyeur à rotor muni d’un battoir à dent (technologie habituellement utilisée dans l’industrie de concassage minier). Les performances de fragmentation du broyeur permettaient d’obtenir des déchets de taille centimétrique. Les déchets broyés étaient ensuite recueillis et lavés dans une cuve agitée contenant une solution de soude (NaOH).

La mise en œuvre d’un tel procédé en boîte-à-gant nécessitait un volume important et favorisait la dispersion d’éléments émetteurs alpha impliquant un risque criticité difficilement maîtrisable.

Applicabilité aux fûts d’enrobés de boues bitumées

Un pré-traitement des colis d’enrobés de bitume par cryo-broyage nécessiterait d’étudier le temps de passage dans le tunnel de refroidissement et les performances du broyeur au regard de la forme physico-chimique des déchets attendue pour l’alimentation du procédé de traitement envisagé. Par ailleurs, la maîtrise de la température de l’enrobé de bitume tout au long du procédé serait un enjeu de 1er ordre pour garantir le maintien de l’enrobé de bitume sous une forme non-visqueuse et éviter ainsi le risque de colmatage. Enfin, le caractère...
friable du bitume à basse température accentuera la difficulté à maîtriser le risque de dissémination de la matière dans un procédé cryogénique.

Ainsi, à l’instar de l’atelier sur lequel a été déployée dans le passé la technologie de cryobroyage, la démonstration de la maîtrise du risque criticité devra être apportée pour le déploiement d’un tel procédé appliqué aux colis d’enrobés de boues bitumées. Enfin, des études menées au CEA dans les années 2000, à l’échelle du laboratoire, ont montré qu’il est tout à fait faisable de fracturer le bitume à une température de -20°C, température classiquement mise en œuvre à l’échelle industrielle dans le domaine de l’agroalimentaire. Par ailleurs, les essais avaient également montré qu’à cette température, il est possible de séparer aisément l’enrobé bitumineux de l’enveloppe métallique.

![Diagramme du procédé de broyage cryogénique](image)

Figure 11 : Représentation schématique du procédé de broyage cryogénique étudié pour le traitement des déchets de l’atelier ATPu (CEA Cadarache).

7.1.3 La découpe par jet d’azote liquide (technologie NitroJet®)

Le procédé de découpe cryogénique NiThrow® développé par ORANO et Air Liquide utilise la technologie NitroJet® conceptualisé par Nitrocision® LLC.

Cette technologie utilise une méthode de refroidissement et de mise sous pression de l’azote créant un jet d’azote liquéfié à ultra haute vitesse ayant une densité comparable à celle de l’eau (Figure 12(a)). Le jet d’azote
liquide permet de découper ou d'écroûter par la projection d’azote liquide à une basse température (-140°C) et une haute pression (jusqu’à 3 500 bar).

L’avantage de cette technique vient du fait que l’azote liquide est rapidement vaporisé et l’azote gazeux se dissipe dans l’atmosphère (procédé en voie sèche) : il n’y a pas de production d’effluent secondaire. Les effets thermiques et les mécaniques du jet d’azote liquide favorisent la décohésion des interfaces. Dans le cas des fûts d’enrobés de bitume, le décollement de la surface contaminée permettrait de s’affranchir d’une contamination résiduelle du fût métallique. De plus, elle permet une découpe sans point chaud.

Des essais de découpe sur tout type de matériaux par procédé Nithrow® ont été menés à l’échelle laboratoire par AREVA en 2012 (Figure 12(b)). L’épaisseur de découpe maximale atteinte sur du bitume pur est de 200 mm, soit 1/5 de la hauteur du colis par une approche frontale et ¼ du diamètre par une approche latérale. Cela signifie qu’en l’état de développement du procédé, de nombreuses opérations successives seraient nécessaires pour parvenir à une fragmentation suffisante (selon les contraintes d’alimentation en aval) et aboutiraient à une cinétique très lente de découpe d’un fût. Cette méthode de découpe basse température oblige aussi à prendre en compte le caractère friable du bitume dans ces conditions et à maîtriser le risque de dissémination de la matière dans l’environnement de déploiement du procédé.

![Figure 12](image_url)

Figure 12 : (a) Représentation schématique du procédé de découpe par jet d’Azote liquide (NitroJet® ou NiThrow®) ; (b) Essai de découpe de bitume (NiThrow®)
7.1.4 Le prétraitement au CO$_2$ supercritique

Le CO$_2$ supercritique (SC) est utilisé dans le monde industriel dans des conditions de pression et de température pour lesquelles le fluide est monophasique, intermédiaire entre les états liquide et gaz. A l’état supercritique (31,1°C, 73,8 bar), le CO$_2$ présente une masse volumique voisine de celle de l'état liquide, une viscosité proche de celle à l’état gazeux et une diffusivité intermédiaire. Ces caractéristiques confèrent au CO$_2$ SC un pouvoir solvant à géométrie variable lié à de très bonnes propriétés de transport, notamment au sein d’un solide.

Le CO$_2$ supercritique possède, dans les bonnes conditions de pression et température, des propriétés de solvant pour les composés organiques. Il est donc envisageable de séparer les sels et la matrice bitume, en utilisant le CO$_2$ supercritique comme solvant du bitume. Les composés organiques solubilisés pourraient être ensuite éliminés par combustion classique (cf. §7.2.2.1). La détente du CO$_2$ permet en fin de procédé de récupérer les résidus organiques d’un côté et les sels de l’autre et de recycler le CO$_2$.

Intérêt des procédés industriels dans le domaine conventionnel utilisant le CO$_2$ SC

- Consommation réduite de solvants organiques toxiques avec moins de traces résiduelles dans les produits finis.
- Procédés compacts avec un nombre réduit d’opérations unitaires.
- Bon contrôle des caractéristiques des produits finis.
- Procédés compatibles aux substances sensibles aux hautes températures ou aux forts cisaillements (dans le cas du bitume, la température de fonctionnement modérée permet de s’affranchir des risques de réactivité).

REX dans le domaine de l’extraction

Cette technologie est utilisée pour l’extraction en CO$_2$ supercritique sur solide, depuis 35 ans à l’échelle industrielle (domaine non nucléaire). Le procédé d’extraction est conduit par batch. Des lignes en parallèle permettent d’augmenter les flux. Les extractions peuvent être très sélectives.

Dans le domaine conventionnel, les exemples sont nombreux comme la purification du liège : le CO$_2$ supercritique est utilisé pour extraire le goût de bouchon (trichloroanizole). Le traitement est effectué sur de la poudre de liège : en augmentant la surface d’échange, le temps de résidence dans l’autoclave est diminué. Environ 8000 tonnes par an de liège sont traitées par batch, dans des autoclaves de 10 à 20 m3 environ.

Cependant, en dehors de l’existence d’un procédé d’extraction par CO$_2$ SC de l’Uranium des cendres d’incinérateur (AREVA Richland – 120 kg/j), cette technologie n’est pas mise en œuvre dans l’industrie du nucléaire.
7.1.5 La solubilisation de la matrice bitume par solvant organique et séparation des sels

La solubilisation de matrices bitumineuses est bien connue dans les domaines de l’exploitation des sables bitumineux comme ressource non conventionnelle de produits pétroliers, de l’extraction spécifique de composés valorisables contenus dans les bitumes, de l’extraction minière et des développements analytiques.

Sur les enrobés de bitume, l’examen de la littérature met en évidence une unique étude dont l’objectif est la reprise des déchets bitumés et la séparation des différents constituants de ces déchets. Cette étude a été réalisée au SCK•CEN au cours des années 2000\(^5\).

Le concept développé par l’équipe du SCK•CEN est une extension de la méthode commune d’analyse des composantes SARA (saturés/aromatiques/résines/asphaltènes) des bitumes. Les étapes sont les suivantes :

- Tout d’abord, l’enrobé est dissous dans un solvant mixte aliphatique/aromatique, conduisant à la solubilisation du bitume ;
- Puis l’ajout d’un solvant aliphatique de type paraffine conduit à la précipitation des asphaltènes ;
- Le précipité contenant les asphaltènes et les sels initialement conditionnés dans l’enrobé sont séparés par centrifugation du surnageant contenant les maltènes, i.e. l’ensemble saturés/aromatiques/résines, en solution dans les solvants utilisés ;
- Les précipités sont traités aux ultrasons dans de l’eau pure puis séparés par filtration : ainsi on sépare les sels insolubles et les asphaltènes de la solution aqueuse contenant les sels solubles.

Ainsi, l’enrobé initial est séparé en trois flux :

- Un effluent organique contenant les maltènes, soit les deux tiers du bitume, ou 40 % de l’enrobé initial ;
- Un effluent aqueux contenant les sels solubles, notamment les nitrates, soit la moitié des sels, ou environ 20 % de l’enrobé initial ;
- Un solide contenant les asphaltènes et les sels insolubles, soit un tiers du bitume et l’autre moitié des sels, ou environ 40 % de l’enrobé initial.

Ces études ont été effectuées sur simulant, puis sur enrobé réel, à l’échelle du laboratoire (quelques grammes d’enrobés). Les activités radiologiques de l’effluent organique résiduel sont compatibles, selon les auteurs, avec un incinérateur industriel de liquides organiques contaminés, mais aucun essai n’a été communiqué. Le traitement ultérieur envisagé de l’effluent aqueux est une étape de destruction des nitrates. Des tests de mise en forme du solide résiduel par pressage de pastilles ont été réalisés sur simulant (échelle laboratoire) afin de conditionner le résidu solide en vue de son stockage.

\(^5\) Nathalie R. E. N. Impens Energy & Fuels 2005, 19, 1235-1244
Les différentes techniques mises en œuvre (solubilisation, précipitation, séparation par centrifugation, application des ultrasons, séparation par filtration, pressage) existent à l’échelle technologique industrielle.

Le choix du solvant organique est essentiel. Il doit permettre une bonne dilution de l’enrobé, ainsi qu’une bonne précipitation et une bonne séparation des précipités. Dans une perspective d’incinération de l’effluent organique, il doit, de plus, être combustible, voire améliorer la combustion des maltènes. Une option de procédé envisageable serait de recycler le diluant par distillation ; dans ce cas, le diluant doit être aisément distillable à partir de l’effluent organique.

Les bitumes sont des mélanges complexes de nombreux composés organiques lourds. Ils ont une structure colloïdale et leur dissolution complète nécessite de très grandes quantités de solvant. L’ajout de diluant permet d’obtenir une phase organique fluide avant la solubilisation complète, mais cette phase est alors généralement colloïdale. Dans l’étude réalisée au SCK•CEN, un rapport diluant/enrobé bitume entre 8 et 24 a été utilisé ; l’optimisation de la nature et de la quantité de diluant est un critère important d’optimisation du procédé. L’extrapolation des conditions expérimentales (pour la solubilisation de 30 g de bitume) des deux premières étapes de solubilisation/précipitation présentées par le SCK, aux 72 000 fûts de déchets bitumineux, conduirait à la mise en œuvre d’environ 50 000 m³ de solvant aromatique puis 50 000 m³ de solvant aliphatique de type paraffinique.

Des quelques études publiées dans la littérature, les diluants à retenir sont des composés aromatiques tels que le toluène ou le o-xylène, et des diluants chlorés, tels que le chloroforme ou le trichloroéthylène, qui permettent une meilleure extraction des bitumes à partir des sables bitumineux que les diluants aliphatiques ou les alcools, les cétones étant intermédiaires. Par ailleurs, des mélanges de diluants peuvent être plus efficaces ; ainsi, un mélange de diluants aliphatiques et aromatiques permet une meilleure extraction que les diluants purs. C’est l’optimum mis en œuvre par les chercheurs du SCK•CEN à l’échelle du laboratoire. L’optimum à l’échelle du pilote ou à l’échelle industrielle peut être différent. L’extraction du bitume assistée par ultrasons pourrait permettre de diminuer les quantités de diluant utilisées.

Enfin, pour améliorer l’efficacité et la cinétique d’un tel procédé chimique, il faudra augmenter la surface spécifique de réaction solvant/enrobé bitumineux, donc fractionner le déchet à froid.

7.1.6 Comparaison des analyses multicritère pour la brique technologique pré-traitement

La synthèse de notes, établie par le GT, sur l’analyse multicritère des procédés de pré-traitement du colis d’enrobé de bitume est présentée dans le Tableau 9 et la Figure 13. L’étape de pré-traitement consiste à reprendre et à mettre en forme l’enrobé de bitume pour l’alimentation du procédé de traitement envisagé : le critère de réduction de volume de déchet est donc sans objet (SO).

Sur les 5 procédés de pré-traitement, seul le procédé par solubilisation dans un solvant organique et séparation sels/matrice organique n’obtient pas la moyenne (<50). Les critères de sécurité (en lien avec l’entreposage de
solvent en grande quantité/volume et de compatibilité avec la directive Reach en terme de toxicité), de flux industriel (cadence du procédé) et d’approvisionnement (quantité/volume de solvent mise en œuvre), entre autres, rendent ce procédé de pré-traitement incompatible avec l’objectif de traitement de l’ensemble des 72 000 fûts de bitume français.

L’analyse multi-critère du procédé de pré-traitement par CO₂ SC obtient la moyenne (50/100). Les caractéristiques de fonctionnement du procédé, en pression (au moins 73,8 bar), catégorisent ce procédé en ESPN (Equipement Sous Pression Nucléaire : >0,5 bar) dont la réglementation impose des contraintes et des exigences d’exploitations sévères (évaluation de conformité, spécification de conception/fabrication, inspections, ...). Par ailleurs, la durée nécessaire à la mise au point et au déploiement industriel de ce procédé pour des fûts d’enrobé de bitume serait très importante (> 20 ans). Cependant, la température de mise en œuvre (au moins 31,1 °C) ainsi que l’absence d’effluent liquide avec possibilité de recycler le CO₂ utilisé dans le procédé le rendent potentiellement attractif.

Concernant le procédé Nithrow, la profondeur de découpe du jet d’azote (de 200 mm au maximum) n’est pas adaptée aux dimensions du fût des enrobés de bitume. Même si ce procédé de pré-traitement obtient une meilleure note (56/100) que le procédé CO₂ SC, il n’a pas été retenu dans l’établissement des filières de traitement au regard de ce verrou technique.

Le procédé de pré-traitement par cryobroyage tel que décrit plus haut doit être adapté pour répondre au besoin spécifique des bitumes. En effet, ce type de procédé fonctionnant à la température de l’azote liquide est trop complexe au regard du volume opérationnel nécessaire (maîtrise de la basse température –critère exploitabilité/maintenabilité). Même si le procédé de pré-traitement par cryobroyage tel que celui déployé dans l’ATPU du CEA Cadarache est sur-dimensionné, une méthode de découpe du type scie diamantée ou concassage en chambre froide semble accessible. Une température du bitume à -20°C semble suffisante.

Enfin, le procédé liquéfaction en température permettant de ramollir l’enrobé de bitume pour sa reprise a été retenu dans l’établissement des filières de traitement. A noter, les enjeux de sûreté associés à ce procédé en température (150°C) au regard du risque incendie des enrobés de bitume persistent.

Finalement, pour l’établissement des filières, les méthodes de découpe ou concassage à froid et de liquéfaction à chaud sont retenues. Malgré une notation relativement faible de la solubilisation chimique ou du CO₂ SC ces deux méthodes ont été retenues par la suite, dans le cadre d’une vision plus globale d’une filière de traitement (§8).
Tableau 9 : Analyse multicritère des procédés de pré-traitement (SO : Sans Objet)

Figure 13 : Illustration de l’analyse multicritère des procédés de pré-traitement
7.2 **LES METHODES DE TRAITEMENT DES ENROBES DE BOUES BITUMEES**

Le procédé de pré-traitement des colis d’enrobés de bitume doit permettre de mettre le déchet sous une forme physico-chimique adaptée au traitement.

Le traitement des enrobés bitumineux doit quant à lui permettre de neutraliser la réactivité du déchet soit par suppression de la réactivité des sels de co-précipitation, notamment les nitrates, soit par destruction de la matrice bitume soit par élimination conjointe des sels et de la matrice bitume.

Les méthodes de traitement étudiées ont été classées selon qu’elles permettent le traitement des sels ou celui de la matrice bitume ou encore le traitement concomitant des 2.

7.2.1 **Traitement des sels par dénitrification**

Une étude de traitement des sels par dénitrification, à l’échelle du laboratoire, a été conduite par le JAEA- Agence japonaise de l'énergie atomique, sur une composition d’enrobé de référence de boues bitumées ayant une proportion massique de 55% bitume-45% sels. La proportion des composés nitrates dans les sels enrobés japonais est très élevée (60% NaNO₃, 24% NaNO₂), comparativement à celle dans les enrobés français (<15% pour les enrobés type STEL).

Ce n’est pas le risque incendie en stockage géologique qui est la justification de l’étude japonaise, mais l’impact hypothétique à long terme en stockage d’une migration de ces nitrates vers la zone de stockage de colis de déchets vitrifiés : une interaction des ions nitrates avec les enveloppes métalliques des colis vitrifiés est à ce stade non recommandée.

Le schéma conceptuel de procédé de traitement est constitué de 11 étapes successives, dont seules certaines étapes ont été testées à l’échelle laboratoire (Figure 14) :

- Découpe du fût primaire pour enlever la couche supérieure de bitume ne contenant pas de sels,
- Retrait de l’enveloppe métallique du fût,
- Broyage avec un broyeur à couteaux de l’enrobé après refroidissement (tests réalisés à l’échelle de quelques kilogrammes portés à -10°C),
- Lixiviation en vue d’extraire tous les sels de nitrates. Cette étape a été testée à l’échelle du laboratoire sur des échantillons de quelques grammes (Cf. ci-dessous).
- Après lixiviation, les fragments d’enrobés résiduels non solubilisés seraient séchés puis placés dans un conteneur parallélépipédique et compressé à 5 MPa. Des tests de compression ont été réalisés à l’échelle d’échantillons de quelques dizaines de grammes.
- Le conteneur de reconditionnement des résidus de bitume et de sels insolubles serait ainsi rempli jusqu’à 7 couches de fragments de résidus compressé (équivalent à 7 fûts primaires).
- Le volume de la solution de lixiviation serait partiellement réduit par évaporation, puis les ions nitrates décomposés en N₂.
- L’étape de décomposition des nitrates en N₂ étudiée est basée sur la combinaison d’une catalyse (utilisation d’un catalyseur à base de Pt-Cu) avec ajout d’un réducteur tel que l’hydrhydrate. La réaction attendue est la...
suivante : 2 NaNO$_3$ + 2 N$_2$H$_4$ + HCOOH \rightarrow Na$_2$CO$_3$ (compatible cimentation) + 3 N$_2$ + 5 H$_2$O. Les essais de laboratoire ont été réalisés sur des volumes d’effluents inactifs simulés de 100 à 500 mL, à 6 molaires en concentration de sels de nitrates, et sur une durée optimisée de 5 heures. Ce processus fonctionne à 80°C, et nécessite 40 g de catalyseur et 167 mL d’hydrazine, pour 500 mL de solution à traiter. Il génère par réduction des nitrates également des composés comme NH$_3$ (qui acidifie la solution) et N$_2$O. Le catalyseur est partiellement dégradé après 3 à 4 séquences de 5h de traitement chacune.

- L’effluent résiduel sans nitrates serait cimenté : il n’existe pas à ce jour d’étude de faisabilité.

Figure 14 : Représentation schématique de la méthode de traitement des sels d’enrobés de bitume japonais visant à la dénitration (D’après K. Irisawa et al., Personal communication)

Les tests de traitement des enrobés mis en œuvre à l’échelle laboratoire ont consisté à lixivier environ 5g d’enrobés de boues bitumées broyés (< 2 mm) dans 50 mL d’eau pendant 48h.

Les résultats expérimentaux (Figure 15) soulignent que :

- Quasiment 100% des espèces nitrates (NO$_3^-$) et nitrite (NO$_2^-$) sont lixiviés (relâchés en solution) après 24h,
- En fin de lixiviation, l’enrobé ne contient plus que 5% massiques de sels (contre 45% avant), qui se répartissent en 4% de sels insolubles et 1% de sels solubles résiduels.
En appliquant les conditions expérimentales décrites ci-dessus (c’est-à-dire applicables à 5 grammes de bitume), les 14 400 tonnes d’enrobés bitumineux devront être lixivées dans 140 000 m³ d’eau. Ce volume d’effluents devra alors être traité avec 47 000 m³ d’hydrazine. En 20 ans, cette extrapolation conduit au traitement de 7 000 m³ d’effluent par an. La transposition de cette méthode de dénitrification des sels des enrobés à l’échelle industrielle dans ces conditions n’est pas envisageable. De plus, cette méthode est sélective aux sels de type nitrate ce qui correspond à une faible proportion dans les enrobés de bitume de type STEL, la question de la neutralisation des autres sels resterait en suspens.

7.2.2 Traitement de la matrice bitume

Les procédés présentés ici ont pour objectif la destruction de la matrice organique bitume et la récupération des sels, destinés ensuite à être conditionnés. Ces procédés, selon le cas, sont également susceptibles de neutraliser la réactivité des sels.

7.2.2.1 La combustion classique

L’incinérateur CENTRACO traite des déchets variés, liquides et solides, organiques ou minéraux dans un système comportant plusieurs chambres de combustion revêtues de réfractaires et chauffées par des brûleurs tel que présenté sur la Figure 16.

Figure 15 : Relâchement des espèces Nitrate (NO₃⁻) et Nitrite (NO₂⁻) dans la solution de lixiviation (eau pure).
Figure 16 : Schéma de principe de l’incinérateur CENTRACO de SOCODEI

L’incinérateur fonctionne en mode de fonctionnement continu, avec une quantité maximale autorisée de 3000 tonnes par an de déchets solides et 3000 tonnes de déchets liquides sur la même durée. Le volume des déchets est réduit d’environ un facteur 15. La limite haute de radioactivité des déchets acceptés est de 20 GBq.t⁻¹ pour les émetteurs β et γ, et de 37 MBq.t⁻¹ pour les émetteurs α. Le débit de dose maximal à la surface de chaque emballage reçu par l’installation ne doit pas dépasser 2 mSv.h⁻¹. Ces activités radiologiques permettent d’assurer une maintenance au contact de l’incinérateur sans avoir à procéder à des interventions télé-opérées.

Les résidus produits sont constitués de cendres (qui peuvent contenir plus de 5 % de carbone) et de poussières qui sont ensuite bloquées dans un liant cimentaire dans des conteneurs métalliques de 400 litres, envoyés au centre de stockage CSA.

Comme montré sur la Figure 16, les déchets solides entrant sont analysés par rayon X afin de détecter la présence excessive de métaux qui sont dirigés vers une unité annexe de fusion ou la présence de déchets interdits comme des corps creux. Si nécessaire, les organiques sont reconditionnés dans des conteneurs combustibles introduits directement dans la première chambre de combustion via un sas adapté. Les liquides sont introduits via des buses disposées en différents points du four.

Le four est composé de deux chambres de combustion dont la première assure une opération de combustion à une température comprise entre 850°C et 1050°C selon la charge thermique des déchets introduits. Il en ressort un gaz chargé en suies et en composés organiques volatils dirigé vers une chambre de post combustion chauffée à 1100°C et dans laquelle de l’air en excès est ajouté.
Le système de traitement des gaz est composé d'une trempe permettant de refroidir les gaz d'une température d'environ 1100°C à une température de 180°C, température compatible avec le système de filtration composé d'une batterie de filtres à manches placés en parallèle. Ce premier système de filtration classique est suivi d'un poste de filtres de très haute efficacité ayant des coefficients de rétention de l'ordre de 5000. Si la filtration arrête les particules solides, elle n’a pas d’effet sur la neutralisation de certains composés chimiques tel que les NOx ou HCl provenant de la combustion des organiques entrants. C’est pour cela que des systèmes de lavage soit en voie humide, soit en voie sèche catalysée sont mis en place avant rejet gazeux à la cheminée.

Le bitume sous forme solide est accepté en mélange avec d'autres déchets incinérables à hauteur de 10% en masse. Le volume du déchet introduit doit être compatible avec la vis sans fin qui permet l'introduction des déchets dans la chambre de combustion, au risque de la détériorer.

Le bitume pur fluidifié dans un solvant organique et apte à être pompé est aussi accepté. Il est injecté au niveau de la chambre secondaire : le bitume pur, utilisé autour de certaines cuves de l’usine de Marcoule, a été fluidifié dans un ester de colza (cf procédé décrit au §7.1.1) pour être incinéré à CTO à raison de quelques tonnes par mois, limité à 100 litres par heure (236 tonnes de déchets au total). Cet effluent organique, est utilisé dans ce cas, comme substituant du fuel lourd dans le brûleur de l’incinérateur.

Dans le cas de la combustion des enrobés bitumineux, les cendres résiduelles contiendraient des sels, qui devront être in fine conditionnés. La neutralisation des sels au regard des conditions de températures atteintes lors de la combustion dans l’incinérateur devra être étudiée et vérifiée.

7.2.2.2 Le traitement par vaporéformage

Le vaporéformage est une méthode de traitement en présence de vapeur d’eau qui permet de dégrader des composés organiques en milieu aqueux dans des conditions à haute température et pression. Il est industriellement utilisé pour produire des composés légers à partir du pétrole lourd, par exemple de l’hydrogène. Il a également fait l’objet d’études pour la décontamination en 14C du graphite français et allemand provenant des réacteurs UNGG. La description du procédé de vaporéformage s’appuie sur le retour d’expérience de ces études.

La vitesse de la réaction d’oxydation thermique du graphite est contrôlée par plusieurs paramètres tels que la vitesse de transport de l’oxydant à la surface du graphite, sa pression partielle, la surface accessible à l’oxydant, la présence de catalyseurs, la température ou encore le taux de désorption des produits d’oxydation. Le procédé nécessite donc une bonne maîtrise des conditions de conduite du procédé afin d’assurer la dégradation complète des composés organiques.

Lors de la mise en contact du graphite avec de la vapeur d’eau à haute température, un certain nombre de réactions homogènes (en phase gaz) et hétérogènes (solide/gaz) ont lieu.
La principale réaction, justifiant l’appellation de vaporéformage, est celle qui intervient entre l’eau (vapeur) et le carbone (graphite). Cette réaction n’est pas la seule à intervenir. Le mélange gazeux obtenu contient un mélange d’O₂, CO₂, CO et H₂, dont la proportion dépend des conditions opératoires, influant sur les équilibres et les cinétiques réactionnelles. Les limitations cinétiques de la destruction du graphite seront diffusionnelles, à la température requise pour la destruction de graphite nucléaire. Dans ces conditions, la mise en contact entre solide et oxydant doit être faite avec le plus grand soin, de même que le choix de la granulométrie du déchet.

Lorsque la température s’élève (en gardant les autres paramètres constants), la proportion de CO/H₂ devient plus importante, tandis que les fractions en CO₂ et H₂O diminuent. Une complète disparition du méthane est attendue aux alentours de 1200°C.

Les températures élevées de fonctionnement (supérieure à 1200°C) présentent plusieurs avantages. La formation de goudrons est très limitée, comme celle de méthane. Les quantités d’hydrogène sont moindres, ce qui peut constituer un avantage en termes de sécurité. Enfin, le fonctionnement à haute température permet davantage de flexibilité au niveau du choix de la pression opératoire.

La quantité de vapeur est exprimée soit en fonction du graphite, soit en fonction de la quantité de dioxygène, via un coefficient α (avec α = [H₂O] / [O₂]).

Une quantité de vapeur insuffisante nuit au bon fonctionnement du procédé de vaporéformage. La conséquence est l'impossibilité d'atteindre un taux de conversion proche de 1, et donc de détruire complètement la matrice graphite, entrainant ainsi une formation importante de suie.

Le dioxygène peut lui être apporté sous forme d'injection d'air, ou bien pur, selon le procédé.

Le traitement par vaporéformage pourrait s’appliquer sur des enrobés bitume après pré-traitement (§7.1). Le procédé de vaporéformage appliqués aux bitumes produirait des cendres et des sels potentiellement oxydés compte-tenu des conditions de fonctionnement (température, atmosphère, …).

Pour autant, un procédé de vaporéformage comme THOR, décrit au §6.6, n’est pas directement applicable puisqu’il nécessite un lit fluidisé pour injecter le déchet dans le procédé, ce qui semble difficilement applicable aux bitumes (risques de bouchages). Des adaptations pourraient être étudiées. Ainsi, par la suite, le vaporéformage sera considéré comme une variante de la combustion classique.

7.2.2.3 Procédés en milieu aqueux sous pression ou supercritique

L’oxydation des composés organiques peut être réalisée en milieu aqueux subcritique ou en milieu supercritique : c’est une extension du vaporéformage. Ces traitements par H₂O subcritique ou supercritique sont des technologies de traitement des déchets organiques novatrices.
7.2.2.3.1 Oxydation hydrothermale sous pression (OVH)

Ce procédé permet l’oxydation de chaînes carbonées dans un milieu aqueux, à une température supérieure à 250°C et inférieure à la température critique de l’eau (374°C) et pour des pressions comprises entre 150 bars et 221 bars.

Le choix du domaine en dessous du point critique de l’eau à 374°C offre des conditions favorables en matière d’efficacité et permet l’utilisation de l’air ambiant comme comburant sûr et économique. Le système d’injection d’air dans l’eau permet d’optimiser l’efficacité du procédé. Le procédé cesse de lui-même dès lors que le carburant (chaîne carbonées) est totalement solubilisé.

Le procédé permet la liquéfaction de la matière et produit principalement une huile et peu de residuals solides. Le gaz produit est principalement du CO₂.

Dans le cas, des enrobés bitumineux, ce procédé permettrait de séparer la matrice organique de la partie minérale des enrobés bitumineux. La matrice solubilisée pourrait être incinérée alors que les sels devront être conditionnés.

7.2.2.3.2 Procédés de traitement en eau supercritique en présence d’oxydant (OHT)

Les propriétés physico-chimiques et de transport de l’eau supercritique sont intermédiaires entre celles du liquide et du gaz ; le point critique de l’eau se situe à 374 °C et 221 bars. Dans l’état supercritique, l’eau se comporte comme un solvant rigoureusement apolaire. Les avantages de ce procédé sont analogues à ceux du vaporéformage ; les conditions de pression supérieure permettent d’assurer une meilleure dégradation des composés organiques.

L’oxydation HydroThermale (OHT) en présence d’un oxydant est utilisée à l’échelle industrielle pour des applications variées (agroalimentaire, traitement de catalyseurs, boues d’épuration, PCB, armes chimiques,…). Une base de données conséquente concernant, les rendements d’oxydation, la corrosion des matériaux, le comportement des phases en présence ou non de charges salines, a été développée sur environ trois décennies tant au niveau de la recherche fondamentale qu’au niveau technologique industriel.

La plupart des applications industrielles d’OHT concernent la destruction des déchets aqueux avec un pourcentage d’organiques ne dépassant pas 20 % massiques ; ce niveau se révèle être trop élevé pour un traitement économiquement viable sur charbon actif, et trop dilué pour un traitement par incinération. Les déchets les plus faciles à traiter contiennent seulement les éléments C, H, O et N. Les hétéroatomes (Cl, P, S) contenus dans certains déchets posent des problèmes de corrosion de matériaux (génération d’acides) ou bien des problèmes mécaniques d’accumulation (précipitation des sels). Suivant le type d’application et les matériaux utilisés, la vitesse de corrosion peut atteindre 10 µm/h et peut conduire rapidement à de coûteuses réparations voire à la destruction d’installations OHT.

Du fait des cinétiques réactionnelles très rapides d’oxydation dans l’eau supercritique, les principales configurations rencontrées dans les installations industrielles sont des réacteurs tubulaires fonctionnant en mode
continu. Il est possible toutefois de rencontrer des configurations avec des réacteurs batch dynamiques (contacteur avec lit fluidisé). Ce type de configuration engendre des coûts de fonctionnement plus importants.

- La première société, MODAR, a été créée en 1980 et a été rachetée en 1996 par General Atomics qui utilise ce procédé pour la destruction d’armes chimiques. Il est aussi industrialisé par Hanwha Chemical Corp pour le traitement de résidus de fabrication de dérivé du toluène. SuperWater Solutions et SuperCriticalFluids International traitent des boues d’épuration en OHT.

Le procédé de séparation/combustion assisté par H₂O supercritique pourrait être envisagé pour le traitement des enrobés de bitume. Il permettrait la dissolution des composés organiques et la séparation des espèces minérales insolubilisées, tout comme l’OVH. De plus, cette technique permettrait également la réduction des nitrates présents dans le déchet à traiter par minéralisation de la matière organique, en association avec un oxydant (H₂O₂ ou O₂). Le principal point dur réside dans le niveau élevé de température et pression à atteindre et dans le mode fonctionnement du procédé par batch.

Le Tableau 10 présente une comparaison des avantages et inconvénients des procédés CO₂ et H₂O supercritique.

<table>
<thead>
<tr>
<th></th>
<th>CO₂</th>
<th>H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acquis</td>
<td>Non inflammabilité et non toxique</td>
<td>Non inflammabilité et non toxique</td>
</tr>
<tr>
<td></td>
<td>Absorbeur</td>
<td>Évaporation en un seul cycle</td>
</tr>
<tr>
<td></td>
<td>Procédé compact</td>
<td>Procédé compact</td>
</tr>
<tr>
<td></td>
<td>Bon contrôle des caractéristiques des produits</td>
<td>Temps de résolution court</td>
</tr>
<tr>
<td></td>
<td>Extraction sélective</td>
<td>Décomposition complète</td>
</tr>
<tr>
<td></td>
<td>Fractionnement possible</td>
<td>Récupération en phase aqueuse des métaux</td>
</tr>
<tr>
<td></td>
<td>Liquidabilité avec un co-solvant</td>
<td>Simple structure en mode continu adaptée à la destruction des déchets industriels dangereux (UID liquides)</td>
</tr>
<tr>
<td></td>
<td>Fiabilité filtration membraneuse</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fiabilité séparation gravimétrique</td>
<td></td>
</tr>
<tr>
<td>Non acquis</td>
<td>Continuité traitement</td>
<td>Continuité de traitement en mode batch</td>
</tr>
<tr>
<td></td>
<td>Filtration assistée</td>
<td>Corrosion des réacteurs et bouchage</td>
</tr>
<tr>
<td></td>
<td>Haute température</td>
<td></td>
</tr>
<tr>
<td>Mode batch dynamique</td>
<td>Traitement des enveloppes en acier</td>
<td>Pas de REX industriel</td>
</tr>
<tr>
<td></td>
<td>Cycles et étanchéité des extracteurs</td>
<td>Pluviomètre de traitement des enveloppes en acier</td>
</tr>
<tr>
<td>Mode continu</td>
<td>Pas de REX industriel</td>
<td>Réduction du volume sous pression</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maintenance lourde</td>
</tr>
</tbody>
</table>

Tableau 10 : Comparaison des milieux CO₂ supercritique et H₂O supercritique.

7.2.3 Traitement des sels et de la matrice organique par incinération-vitrification

Un tel traitement consiste à associer un procédé de vitrification, visant à conditionner la part minérale résiduelle, à un procédé d’incinération par torche à plasma, visant à décomposer la part organique en composés gazeux. Le
procédé produit directement une matrice de conditionnement vitreuse, sans besoin d’étape de post-traitement supplémentaire.

Deux systèmes sont étudiés au CEA :

- Le procédé SHIVA : Système Hybride d’Incinération Avancé
- Le procédé PIVIC : Procédé d’Incinération Vitrification In Can

Les procédés PIVIC et SHIVA ont été développés pour le traitement de déchets contenant des organiques en grande quantité (plastiques variés, notamment chlorés). Le développement de PIVIC est centré sur le traitement de déchets technologiques solides contaminés alpha alors que SHIVA a été conçu pour fonctionner sur des déchets solides et liquides (boues, REI, enrobés de boues bitumées). Ces deux procédés sont constitués de creusets à parois froides pour limiter les problématiques de corrosion et permettre une exploitation en moyenne ou haute activité. Les parois froides permettent le nettoyage périodique de l’installation sans générer de grande quantité de matériaux réfractaire notamment dans le cas particulier d’un traitement de déchets riches en émetteurs alpha.

L’incinération de la fraction organique du déchet est assurée par un plasma d’oxygène dans les deux procédés (l’utilisation de l’oxygène permet une diminution significative des gaz de combustion à traiter dans le traitement des gaz puisqu’il n’y a pas d’azote inutile, et son absence en quantité importante minimise la production d’oxydes d’azote).

Pour les deux procédés, un traitement des gaz de type sec est utilisé, un refroidissement par dilution / change, une filtration par électrofiltration, une filtration THE suivi d’un abatage des gaz acides dans une colonne de lavage. Les deux procédés sont capables de produire des gaz sans composés imbrulés en sortie de réacteur, ce qui rend inutile une étape de postcombustion. Cet avantage demeure cependant hypothétique pour une application industrielle où l’absence de postcombustion pourrait rendre impossible une démonstration de sûreté en conditions dégradées (perte de plasma en cours d’incinération, suralimentation accidentelle).

7.2.3.1 Le procédé SHIVA

Le procédé SHIVA a été conçu pour fonctionner avec une alimentation en déchets broyés ou fractionnés.

Le plasma est généré par un système d’arc transféré à deux torches jumelées. L’avantage avec les torches développées est une minimisation de la maintenance puisque les torches sont munies d’électrodes consommables à alimentation automatique. Ces torches peuvent fonctionner avec une quantité de gaz faible contrairement aux torches à arc soufflé. L’inconvénient est une sensibilité de la stabilité du plasma à l’atmosphère gazeux (l’arc est libre entre les deux électrodes, des variations de puissances ou coupures peuvent se produire). Par contre, dans cette configuration de SHIVA (Figure 17), les torches à plasma permettent la mise en fusion initiale du bain de verre (une fraction de courant d’arc peut circuler directement dans le bain de verre, pouvant occasionner temporairement une surchauffe locale). Pour SHIVA, la charge est alimentée directement en surface
du bain de verre, les interactions potentielles avec le bain de verre sont plus complexes. Le bain de verre est chauffé directement par induction haute fréquence (~200 kHz) dans un creuset froid de type avancé (CFA). L’inducteur est placé sous la sole (qui doit donc être transparente aux champs électromagnétiques) contrairement au creuset froid classique où l’inducteur est placé autour d’une virole sectorisée. Cette configuration avancée autorise facilement un accroissement du diamètre du creuset, donc de la capacité de fusion (le diamètre du creuset de SHIVA est de ~ 0,6m, les Creuset Froids Avancés de 1,1 m (capacité X 3,5) ont déjà été construits). La technologie de coulée actuellement mise en œuvre sur cet équipement permet une vidange périodique via un dispositif de vanne. SHIVA est un procédé semi-continu dans sa configuration étudiée. Il ne possède aucun dispositif d’homogénéisation du bain de verre en fusion.

Figure 17 : Schématisation du procédé SHIVA (France).
7.2.3.2 Le procédé PIVIC

Le procédé PIVIC (Figure 18) est conçu pour une alimentation en déchets non triés : le métal de l’enveloppe et le bitume n’auraient pas besoin d’être séparés. Cependant les déchets doivent être de taille centimétrique pour être injectés dans le procédé.

Le plasma est généré par une torche à plasma d’arc soufflé, nécessitant un minimum de gaz pour fonctionner correctement et occasionnant des vitesses de gaz plasma élevé. Le pilotage du plasma est facilité par sa stabilité, insensible à la nature de l’atmosphère du réacteur. Les électrodes nécessitent une maintenance fréquente, la nucléarisation doit donc prendre en compte la simplification des opérations de changement d’électrodes (à noter que des torches type «cartouches» ont été développées, à ce jour pour des faibles puissances). L’incinération est réalisée dans un véhicule suspendu dans le réacteur et seuls les résidus sont amenés dans la phase fondue. Le chauffage est assuré par induction directe basse fréquence (~50 Hz) dans la phase métallique, qui chauffe une phase verrière surnageante. Ce principe sous-entend un talon métallique de démarrage : un creuset en céramique contenant les phases fondues est logé dans une enveloppe métallique pour former un «can». En fonctionnement, l’enveloppe externe de ce can est insérée dans un système de refroidissement. Il n’y a pas de coulée de verre et le « can » est remplacé après chaque remplissage. Avec ce
principe, le diamètre du can (~0.5 m) ne peut pas significativement être augmenté. PIVIC est un procédé discontinu (changement du can à chaque remplissage) ce qui impacte le flux. PIVIC bénéficie d'une agitation sans dispositif particulier des phases métal et verre, induite par la mise en mouvement de la phase métallique sous l'effet du champ électromagnétique basse fréquence.

7.2.3.3 Discussion sur le traitement des enrobés bitumineux par SHIVA et PIVIC

Globalement, pour un traitement thermique de conditionnement en une seule étape, sans post traitement de résidus et à réduction de volume significative, le principe d'incinération / vitrification dans un seul réacteur en utilisant des moyens de chauffage séparés pour gérer la combustion et la fusion indépendamment est intéressante.

Pour l'incinération, le plasma d'oxygène apporte l'avantage d’un procédé allothermique à puissance contrôlable contrairement à une flamme. L'utilisation d'oxygène permet de réduire considérablement la taille des unités du traitement des gaz.

Les parois froides des deux procédés (et réfractaire consommable de can pour PIVIC) sont intéressantes dans le cas du traitement du bitume car elles génèrent peu de déchets secondaires de maintenance (réfractaires de four). De plus, l’absence de chlorures élimine la problématique de la corrosion par les chlorures métalliques dans cette application. Elles rendent également possible la gestion de la criticité par nettoyage (ce qui n’est pas le cas de fours en réfractaires).

En ce qui concerne SHIVA, les premières études ont montré que la technologie nécessite des évolutions :

- le concept de creuset froid avancé doit être amélioré pour tolérer la présence de phases séparées conductrices dans le verre. Ceci vaut pour le bon fonctionnement du chauffage par induction sans dégradation de l’équipement mais également pour le dispositif de coulée qui doit être compatible avec les différentes phases,
- des dispositifs de brassage du verre devraient être implantés de façon à favoriser la réactivité et l'homogénéité du verre produit,
- Le principe de SHIVA peut s'adapter à une augmentation de taille afin d'obtenir des capacités de traitement de l’ordre de 100 à 200 kg/h. La capacité de SHIVA actuelle est estimée entre 10 et 20 kg/h en alimentation continue régulée.

En ce qui concerne le procédé PIVIC, le point fort est la tolérance à la présence de plusieurs phases, dont une métallique en fond de creuset ou surnageante. L’absence de besoin de coulée renforce cet avantage. Le brassage électromagnétique sans dispositif annexe est un autre point positif.

- la gestion de la combustion de l’enrobé dans un contenant dans le réacteur pourrait être améliorée,
- une alimentation (régulée) d’enrobé directement à la surface du bain de verre fondu dans le procédé pourrait être une alternative à étudier sur PIVIC, assortie d’une modification du parcours des gaz dans le procédé pour les traiter dans la chambre de combustion (sortie en partie haute plutôt qu’en partie basse),
• une approche industrielle sur la capacité serait nécessaire, le procédé étant grevé par les opérations d’accostage / désaccostage et l’augmentation du débit de traitement du procédé actuel semblant moins simple à réaliser.

Dans le cas des deux procédés, comme pour tous les procédés thermiques qui seraient évalués, il faut s’attendre à une volatilité significative du césium : il faudrait donc optimiser la décontamination des gaz en césium et son recyclage dans le procédé. Il s’agirait par exemple de le recycler dans des phases de fusion seule et à basse température, potentiellement avec un adjuvant de vitrification adapté.

7.2.4 Comparaison des analyses multicritères pour la brique technologique traitement

La moyenne des évaluations de chaque critère pour chaque procédé de traitement a été reportée dans le Tableau 11 et la Figure 19. Trois des 7 procédés évalués n’obtiennent pas la moyenne (note < 55) :

- le procédé chimique en phase liquide (dénitréation) ;
- les deux procédés hydrothermaux sous pression et à des températures supérieures à 300°C.

Dans le premier cas, les experts ont jugé que les flux de traitement seraient trop faibles et difficiles à augmenter compte tenu des cinétiques de réaction. Par ailleurs, les volumes d’effluents à mettre en œuvre seraient trop importants ce qui nécessiterait de disposer de cuves d’entreposage de grand volume avec un risque pour l’environnement et de sécurité vis-à-vis de l’explosion. De plus, dans le cadre de la réglementation REACH, l’hydraine a été classée en 2011 comme substance dangereuse et soumise à autorisation dans un futur proche.

Dans le second cas, la sûreté d’un tel procédé est jugée rédhibitoire par le GT du fait de l’application simultanée d’une forte pression et d’une température supérieure à 300°C sur l’enrobé bitumineux lui-même réactif en température (sels mélangés dans la matrice bitumineuse). Par ailleurs, la durée pour mettre au point un tel procédé est supérieure à 10 ans et probablement supérieure à 20 ans.

En dehors du contexte de la filière de traitement des déchets bitumineux, les deux procédés d’incinération/vitrification semblent pertinents et leur application au cas des bitumes mérite d’être évaluée, même si le GT a jugé « très difficile » le respect de plusieurs des critères identifiés. Bien que la faisabilité de la combustion de l’enrobé dans cette configuration reste à démontrer, le procédé PIVIC pourrait permettre de traiter le déchet sans séparer l’enrobé bitumineux de l’enveloppe métallique, contrairement au procédé SHIVA. De fait, seul un concept de type PIVIC (avec éventuellement des adaptations) sera retenu comme procédé de traitement par incinération/vitrification dans l’étude des filières.

L’incinération est le procédé qui paraît le plus attrayant. Cependant, elle doit être couplée à un post-traitement comme la vitrification ou la cimentation des déchets ultimes.

Le Vaporéformage est un procédé déjà industriellement exploité pour l’incinération de déchets radioactifs FMA-VC. Dans la suite de l’analyse multicritères par filière, le Vaporéformage sera considéré comme une variante de la combustion classique.
<table>
<thead>
<tr>
<th></th>
<th>SHIVA</th>
<th>PIVIC</th>
<th>OHT/OVH</th>
<th>Vaporéformage</th>
<th>Combustion classique</th>
<th>Dénitration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sûreté</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Criticité</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Sécurité</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>6</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Radioprotection</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Environnement</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Réduction de volume de déchets</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>NE</td>
</tr>
<tr>
<td>Déchets induits</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Flux industriels</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Exploitation/maintenabilité</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Approvisionnement</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Disponibilité</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Total /110</td>
<td>58</td>
<td>62</td>
<td>50</td>
<td>56</td>
<td>72</td>
<td>42</td>
</tr>
<tr>
<td>Total/100 pour dénitratin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tableau 11 : Analyse multicritère des procédés de traitement.
Figure 19 : Illustration de l’analyse multicritère des procédés de traitement des fûts d’enrobés bitumineux
7.3 **LES METHODES DE POST-TRAITEMENT**

7.3.1 **La cimentation**

La cimentation est couramment utilisée pour conditionner des déchets. Néanmoins, la mise au point d'une formulation cimentaire d'enrobage d'un déchet de chimie complexe comprend plusieurs étapes récapitulées en bleu sur la Figure 20 :

- le déchet, dont la caractérisation doit être la plus précise possible (physico-chimie, radiochimie), est si possible simulé par des produits non radioactifs pour faciliter les manipulations,
- une analyse théorique des réactions possibles entre les phases cimentaires et le déchet peut conduire à définir un pré-traitement du déchet pour le rendre stable en milieu cimentaire,
- la formulation de l’enrobé consiste à choisir le ciment, les additifs minéraux et éventuellement les adjuvants organiques (plastifiant, viscosant…), puis à déterminer leurs proportions pour maximiser le taux d’incorporation du déchet. Les essais sont en général réalisés avec un déchet synthétique de composition moyenne à l’échelle du litre. Les matériaux élaborés sont ensuite caractérisés (viscosité après malaxage, ressuage, temps de prise, chaleur d’hydratation, variations dimensionnelles et pondérales, propriétés mécaniques, résistance à la lixiviation…),
- si l’enrobé satisfait au cahier des charges, la robustesse de la formulation est testée, toujours à l’échelle laboratoire. Il s’agit de vérifier que ses propriétés ne sont pas dégradées par les variations possibles de la composition chimique du déchet ou des proportions des constituants de l’enrobé,
- la validation intervient après des essais en boîte à gants sur déchet réel et/ou des essais d’irradiation externe simulant la dose susceptible d’être intégrée par la matrice (échelle du litre),
- les paramètres de procédé (technologie, vitesse d’approvisionnement des réactifs, séquence de malaxage, processus de vidange) sont ajustés en réalisant des essais sur un pilote de taille représentative du malaxeur industriel. Une fois ces paramètres déterminés, la caractérisation d’un colis inactif (de plusieurs centaines de litres) produit avec le procédé optimisé est réalisée.
Figure 20 : Méthodologie pour le développement d’une formulation cimentaire pour le conditionnement de déchets.

Le procédé de cimentation pourrait s’appliquer au conditionnement des sels séparés de la matrice de bitume à l’issue de l’étape de traitement des enrobés. Le principal inconvénient de ce procédé est le taux d’incorporation limité dans la matrice cimentaire (10 à 20 %) ; les sels devront être chimiquement neutralisés avant incorporation dans une matrice cimentaire.

7.3.2 Vitrification du type In Can Melting

La technologie envisageable pour la vitrification des sels, une fois séparés de la matrice organique (bitume), est le procédé In-Can (Figure 21). Cette technologie de vitrification est compacte, robuste et ne présente pas de dispositif de coulée. Le principe de vitrification est simple. L’alimentation du mélange frappe-déchet est réalisée dans un conteneur de fusion métallique, non agité et à usage unique. Il est chauffé jusqu’à des températures d’élaboration limitées à 1100 °C. Après élaboration à haute température, le verre de confinement est solidifié directement dans le conteneur. Ce procédé de vitrification est un procédé simple qui a été développé par le CEA pour la vitrification d’effluents très actifs. Dans ce cas, la technologie est mature au degré 8 sur l’échelle TRL. La faisabilité de la vitrification d’un déchet solide est en cours d’évaluation. Un des enjeux est d’adapter la teneur massique en déchet et la composition du verre à la physico-chimie du déchet afin d’optimiser, notamment, la température d’élaboration, la viscosité et la tolérance de la formulation de la matrice à la variabilité des déchets. Des adjuvants de vitrification qui ont une influence sur la réactivité peuvent être ajoutés afin d’optimiser l’incorporation du déchet dans la matrice de verre. Enfin, la neutralisation des sels par oxydation sera assurée dans le cas de ce procédé.

Le principal inconvénient de ce procédé est un fonctionnement en température qui, contrairement à la cimentation, nécessite un traitement des gaz en sortie de procédé.
7.3.3 Vibro compaction

Le procédé de vibrocompaction est très largement utilisé pour la fabrication de pièces en béton comme des parpaings ou des bordures de trottoir. Le béton frais est compacté sous l’action des sollicitations appliquées par une presse vibrante. L’avantage principal réside dans le fait d’un démoulage immédiat qui évite d’immobiliser des moules pendant la prise du ciment. En effet, après démoulage, le ciment n’a pas encore pris mais le matériau compacté présente une stabilité dimensionnelle satisfaisante pour ne pas s’affaisser et pouvoir être convoyé en enceinte de maturation (prise du liant par hydratation du ciment). Cette technique permet des cadences de production très élevées, l’ensemble des opérations de remplissage des moules, vibrocompaction et démoulage durant moins d’une minute. La presse vibrante est en pratique commandée par deux paramètres : la fréquence (de l’ordre de 50 à 60 Hz) et pression appliquée (en général inférieure à 2 MPa).

Le procédé de vibrocompaction n’a pour l’instant pas été mis en œuvre pour le conditionnement de déchets cimentés mais il a été étudié pour le conditionnement de déchets de type boues de coprécipitation. Les boues sont granulées avec du ciment puis les granules sont mis en forme monolithiques par compaction ou vibrocompaction. Les essais effectués sont restés à l’échelle laboratoire. Deux types de procédés pourraient être envisagés (Figure 22) :

- la réalisation de blocs de taille réduite qui sont ensuite placées dans le conteneur de stockage,
- la vibrocompaction directe en conteneur par plusieurs passes successives.
Figure 22 : Deux utilisations possibles de la vibrocompaction pour la fabrication de colis de déchets cimentés : élaboration de blocs qui sont ensuite mis en conteneurs (gauche), ou vibrocompaction directe dans le conteneur (droite).

Les avantages associés à ce procédé seraient les suivants :

- la possibilité de conditionner des boues difficiles à cimenter avec les procédés classiques (mélange trop visqueux et inhomogène pour être simplement vidangé en fût),
- la limitation des déchets secondaires par suite de la très faible adhérence du mélange d’aspect sec sur les parois du malaxeur,
- la minimisation de la teneur en eau des enrobés cimentaires, ce qui devrait permettre de diminuer leur porosité et donc d’améliorer leurs propriétés mécaniques, mais aussi de réduire la production de gaz par radiolyse de la solution interstitielle (eau excédentaire résiduelle dans la porosité du matériau),
- l’augmentation du taux d’incorporation du déchet,
- la limitation de l’auto-échauffement du colis cimenté avec un procédé en deux étapes consistant en la réalisation de blocs de taille réduite qui seraient ensuite placés en conteneur après prise du ciment.

La contre-partie est une mise en œuvre plus complexe que celle des procédés classiques de cimentation (malaxage en ligne ou en conteneur).
7.3.4 Comparaison des analyses multicritère pour la brique technologique post-traitement

Les trois procédés obtiennent plus de la moyenne (Tableau 12 et Figure 23). En effet, la cimentation est un procédé couramment déployé pour le conditionnement de déchets y compris des déchets réactifs comme des REI (de catégorie FMA-VC), dont le principal (seul) inconvénient est un taux d’incorporation assez faible. Pour autant, ce faible taux d’incorporation permettrait probablement d’évacuer les déchets ultimes au CSA.

La vitrification en In Can Melter est mature pour le conditionnement d’effluents ; ce procédé est envisageable pour le conditionnement de déchets solides.

Dans les deux cas la réactivité des sels doit être maîtrisée en amont du procédé. A ce stade, ces trois technologies semblent toutes pertinentes. Par la suite, les experts du GT ont considéré que la vibrocompaction est une variante de la cimentation dans le champ des filières possibles.

<table>
<thead>
<tr>
<th></th>
<th>Cimentation</th>
<th>In can Melting</th>
<th>Vibrocompaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sûreté</td>
<td>9</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Criticité</td>
<td>8</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Sécurité</td>
<td>10</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Radioprotection</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Environnement</td>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Réduction de volume de déchets</td>
<td>1</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>Déchets induits</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Flux industriels</td>
<td>9</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>Exploitation/maintenance</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Approvisionnement</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Disponibilité</td>
<td>10</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Total /110</td>
<td>83</td>
<td>64</td>
<td>71</td>
</tr>
</tbody>
</table>

Tableau 12 : Analyse multicritère des procédés de post-traitement
Figure 23 : Illustration de l’analyse multicritère des procédés de post-traitement

8. LES FILIERES DE TRAITEMENT

A l’issue de l’analyse multicritère des technologies de traitement, deux procédés de traitement sont retenus :

- Un procédé d’incinération / vitrification : le procédé du type de PIVIC serait capable de traiter à la fois la matrice organique et l’enveloppe métallique ce qui permettrait d’éviter une étape de séparation enveloppe métallique/bitume. Les déchets qui résultent de l’incinération par torche sont vitrifiés directement dans la partie basse du procédé en In Can Melting ;

- Un procédé de combustion classique soit d’un bitume solide soit d’un bitume solubilisé et séparé des sels ; le vaporéformage serait considéré comme une variante de la combustion classique.

Dans un premier temps, le procédé de pré-traitement tel que la solubilisation chimique n’avait pas été retenu par les expert du GT. Cependant, dans la vision globale de la filière, la séparation chimique sels/matrice organique en préalable à l’incinération a été envisagée. Ainsi, le procédé de pré-traitement par solubilisation dans un solvant organique a été retenu et sa mise en œuvre a été comparée à celle du procédé CO₂ supercritique (autre procédé de séparation de la matrice organique) (cf. §7.1.4).
Des opérations de pré-traitement et de conditionnement doivent être associées aux cœurs de procédé d'intérêt pour construire les filières et leurs variantes.

Pour une meilleure compréhension et identification des filières et variantes, elles sont numérotées de la manière suivante :

Filière X.Y.Z :
- X représente le cœur de procédé de traitement (le cœur de procédé de traitement est identifié par le 1er chiffre de la filière car il conditionne les procédés de pré-traitement et de post-traitement) ;
- Y représente le procédé de pré-traitement ;
- Z représente le procédé de post-traitement.

8.1 Évaluation multicritère des filières

Ainsi, trois filières et leurs variantes ont été retenues par le GT pour l'évaluation multicritère selon la grille exposée au § 4.2, en y ajoutant trois autres critères :

- Le transfert : évaluation de la complexité du transfert du déchet entre deux étapes de procédés ;
- Simplicité de la filière : évaluation de la complexité de la filière notamment en nombre d'étapes ;
- Traitement d'effluents : évaluation de la complexité du traitement et de la gestion des effluents gazeux et liquides.

Le système de notation est équivalent à celui utilisé pour l'analyse multicritère de chaque procédé (§4.2).

8.2 Description des filières

8.2.1 Filière 1 : incinération vitrification

Ce traitement est jugé intéressant s'il permet de traiter à la fois la matrice organique et l'enveloppe métallique du fût (cas du procédé PIVIC).

Pour injecter le déchet dans le procédé, il doit être fractionné à l'échelle centimétrique : une méthode de découpe du type scie diamantée ou concassage en chambre froide doit être suffisante. Le cryobroyage tel que mis en service aux ATPU semble surdimensionné mais reste intéressant d'un point de vue REX de nucléarisation. Les déchets ainsi préparés sont incinérés dans un four suspendu au-dessus d'un module de fusion de type IN CAN chauffé par induction contenant la fritte de verre et le métal fondu. Les déchets sont directement conditionnés dans le pot de fusion. Un conditionnement en colis d’entreposage sera probablement nécessaire. Les colis seront
entreposés de façon sure jusqu’à leur stockage dans Cigéo. Un facteur de réduction de volume initial de déchet (enrobé) de 2 est escompté.

8.2.2 Filière 2 : combustion classique ou vaporéformage d’un déchet solide

Le cœur de procédé dans le cas de la filière 2 est la combustion classique ou le vaporéformage d’un déchet solide ; plusieurs variantes sont possibles (Tableau 13).

<table>
<thead>
<tr>
<th>Filière combustion d’un déchet solide</th>
<th>Liquéfaction à chaud (Y=1)</th>
<th>Découpe à froid ou concassage à froid (Y=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fûts métalliques au CSA (Z=1)</td>
<td>2.1.1</td>
<td>2.2.1</td>
</tr>
<tr>
<td>Fûts métalliques à la fusion (Z=2)</td>
<td>2.1.2</td>
<td>2.2.2</td>
</tr>
</tbody>
</table>

Tableau 13 : Variantes de la filière 2

Les variantes de procédé de pré-traitement sont :

2.1.Z La séparation fût métallique/déchets bitumineux s’effectue à chaud en continu. L’enrobé bitumineux est directement déversé dans l’incinérateur.

2.2.Z Les déchets sont incinérés (Combustion classique de type Socodei) sous forme solide après séparation fût métallique/déchet bitume. La séparation bitume / fût serait effectuée à froid.
Les variantes de procédé de post-traitement pour les fûts métalliques sont :

2.Y.1 Les fûts métalliques seraient conditionnés et évacués au CSA. Il faudra vérifier le critère de propreté radiologique à atteindre pour envoyer ces fûts en stockage. Ce procédé de traitement serait moins intéressant si le fût résultant devait être dirigé vers Cigéo.

2.Y.2 Les fûts métalliques pourraient être dirigés vers une unité de fusion afin de réduire le volume des déchets puis envoyés au CIREs. Dans ce cas, la contrainte sur le niveau de propreté radiologique du fût risque d’être pénalisante.

Les déchets bitumineux (matrice-sels) seraient ensuite incinérés sous vapeur d’eau (vaporéféormage) ou non ; certains sels à cette température se trouveront d’ailleurs oxydés ou détruits (PPFNI…). Les déchets qui en résultent seraient vitrifiés (cendres et sels oxydés) pour être envoyés vers à Cigéo, en considérant un facteur de réduction de volume de 2. Une alternative à la vitrification serait la cimentation. Dans ce cas, le volume de déchets ultimes à stocker serait supérieur du fait du taux de charge de déchets dans une matrice cimentaire : les déchets cimentés seraient potentiellement acceptables au CSA. A noter qu’il faudrait s’assurer de la neutralisation des sels avant cimentation.

Figure 25 : Exemple de logigramme de la filière 2 (combustion d’un déchet solide)
8.2.3 Filière 3 : combustion classique d'un déchet liquide après séparation des sels et de la matrice organique

Le cœur de procédé retenu de la filière 3 (Figure 26) est la combustion classique d'un déchet liquide après séparation des sels et de la matrice organique. Un procédé par CO$_2$ supercritique permettrait de solubiliser la matrice bitume et de la séparer des sels. Le résidu organique obtenu serait incinéré dans un incinérateur du type de CENTRACO. Les radionucléides devraient être assez peu entrainés dans la phase organique qui serait par conséquent peu active. De même, la solubilisation/séparation sels-matrice organique dans un solvant pourrait être envisagée à condition qu'une opération de filtration soit mise en œuvre avant l'injection dans l'incinérateur.

Ce pré-traitement n'avait pas été retenu essentiellement pour des raisons de flux de traitement assez faibles et de difficultés de mise en œuvre induites par des quantités très importantes de solvant organique (cf §7.1.6). Cependant, sa mise en œuvre, a été évaluée par comparaison au CO$_2$ SC, dans le cas de l’approche globale d’une filière de gestion.

Pour cette filière, plusieurs variantes sont possibles, tout comme la filière 2 (Tableau 14).

<table>
<thead>
<tr>
<th>Filière combustion d’un déchet liquide</th>
<th>Liquéfaction à chaud (Y=1)</th>
<th>Découpe à froid ou concassage à froid (Y=2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X = 3</td>
<td>3.1.Y</td>
<td>3.2.Y</td>
</tr>
<tr>
<td>Fûts métalliques au CSA (Z=1)</td>
<td>3.1.1</td>
<td>3.2.1</td>
</tr>
<tr>
<td>Fûts métalliques à la fusion (Z=2)</td>
<td>3.1.2</td>
<td>3.2.2</td>
</tr>
</tbody>
</table>

Tableau 14 : Variantes de la filière 3

Les variantes de procédé de pré-traitement sont :

3.1.Z la matrice bitume est solubilisée et séparée des sels par CO$_2$ SC.
3.2.Z la matrice bitume est solubilisée et séparée des sels par solvant organique.

Plusieurs variantes relatives au conditionnement des fûts métalliques sont possibles :

3.Y.1 les fûts seraient envoyés au CSA.
3.Y.2 les fûts seraient envoyés dans une unité de fusion avec envoi au CIRES.

Les cendres et mâchefer qui résultent de la combustion de l’effluent organique prendraient la voie habituelle, qui consiste en une cimentation et un envoi vers le CSA.

Comme la filière 2, le vaporéformage, déjà exploité dans l’industrie du nucléaire pourrait être une alternative à la combustion classique. Ce procédé présente l’avantage de gazéifier complètement la matrice organique.
Concernant les sels, ils seraient vitrifiés avec un facteur de réduction de volume de 2, par rapport au volume initial d’enrobés bitumineux : dans ce cas les déchets ultimes seraient orientés vers Cigéo. Si les sels étaient cimentés, les déchets ultimes seraient probablement acceptables au CSA. Cependant, il faudrait s’assurer de la neutralisation de la réactivité des sels en amont de la cimentation.

Figure 26 : Exemple de logigramme de la filière 3 (combustion d’un déchet liquide)

8.3 Resultat de l’Analyse Multicriteres des Filières

Les experts du GT ont évalué chacune de ces filières (les 3 filières et leurs variantes). Les moyennes des évaluations des différents experts par filière et pour chaque critère sont présentées dans le Tableau 15 et la Figure 27. Seules les filières 1 et 2 obtiennent la moyenne. La filière 3 obtient les plus faibles scores.

Les verrous technologiques, les incertitudes associées à l’efficacité des procédés, la durée de développement pour arriver à des procédés industriels et les risques soulevés par le GT pour la filière 3 sont exactement ceux déjà exposés au §7.1.6. De plus, la filière 3 est un enchaînement de procédés avec une gestion probablement complexe du transfert des déchets.

En conséquence, le GT considère que les filières 1 (incinération/vitrification) et 2 (combustion classique d’un déchet solide avec variante vaporéformage) semblent pertinentes pour mener une analyse technico-économique.
Tableau 15 : Analyse multicritères des filières

<table>
<thead>
<tr>
<th>FILIERES</th>
<th>filière 1</th>
<th>filière 2.1.1</th>
<th>filière 2.1.2</th>
<th>filière 2.2.1</th>
<th>filière 2.2.2</th>
<th>filière 3.1.1</th>
<th>filière 3.1.2</th>
<th>filière 3.2.1</th>
<th>filière 3.2.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sûreté</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Criticité / mesures nucléaires</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sécurité (ex : appareil sous pression)</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Radioprotection</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>Environnement</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Réduction du volume de déchets</td>
<td>9</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Déchets induits</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Flux industriels</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Taille de l'installation</td>
<td>7</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Exploitabilité/maintenabilité</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Approvisionnement (fluides/matières)</td>
<td>8</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Disponibilité</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Transfert du déchet</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Simplicité du procédé (nombre d'étapes)</td>
<td>8</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Traitement effluents</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Total/150</td>
<td>90</td>
<td>80</td>
<td>76</td>
<td>81</td>
<td>77</td>
<td>66</td>
<td>63</td>
<td>60</td>
<td>56</td>
</tr>
</tbody>
</table>
Figure 27 : Illustration de l’analyse multicritère des filières de traitement des fûts d’enrobés bitumineux
9. CONCLUSION

Le présent rapport est le fruit d’un véritable travail commun de deux groupes quadripartites ANDRA-CEA-EDF-ORANO qui se sont succédé depuis novembre 2017, d’abord sur la R&D portant sur les différents procédés de traitement, puis dans un second temps sur l’industrialisation de ces procédés.

Pour rappel, le travail a porté sur différentes briques technologiques potentielles qui, assemblées sous forme de filière visent à séparer le bitume de son enveloppe, de traiter la réactivité des bitumes et des sels (avec une ambiguïté relevée infra) et de conditionner les résidus pour une mise en stockage final à définir. Deux phases successives d’analyse ont eu lieu :

- d’abord par étape (pré-traitement, traitement, post-traitement) : pour chaque étape, les différents procédés potentiels ont été analysés et comparés entre eux ;
- ensuite en intégrant ces briques au sein de filières, pour comparer cette fois les filières selon des critères de dangerosité (risques industriels), de maturité et d’opérabilité.

Il s’agit donc d’un essai d’analyse à large spectre, avec des experts de spécialités diverses et selon une analyse multicritères, qui a conduit à cibler les briques les plus prometteuses et à les intégrer au sein de trois filières technologiques.

Le CEA, dans sa fonction de président du groupe de travail, tient à :

- remercier les experts qui ont abordé cette problématique sans aucun préjugé technique, en s’interdisant d’exclure une technologie sans l’avoir instruite au préalable, et sans arrière-pensée économique ou d’opportunité commerciale ;
- insister sur le caractère consensuel de cette évaluation (les notes données par les différents experts, filière par filière et critère par critère en témoignent) ;
- attirer l’attention du lecteur sur le caractère non abouti car il s’agit d’un rapport d’étape, qui doit être dorénavant complété par des études de pré-faisabilité portant sur les trois filières technologiques pressenties à ce stade comme offrant le meilleur potentiel ; c’est seulement à l’issue de cette phase de pré-faisabilité (fin 2018) qu’un pré-chiffrage pourra être réalisé sur la base des hypothèses de dimensionnement des installations, des flux de traitement et de la nature et du volume des déchets finaux produits ;
- relever que la note de maîtrise de la sûreté de chacun des procédés est assez basse (la moyenne ou juste en dessous) ; ce point n’est pas considéré comme rédhibitoire à ce stade d’instruction, mais il devra faire l’objet de discussions approfondies à la fin de la phase de pré-faisabilité car la maîtrise de la sûreté de procédés industriels complexes constitue un élément primordial ;
- regretter que n’ait pu être complètement défini par l’IRSN, en préalable de cette étude, la signification exacte du concept recherché de « neutralisation de la réactivité des bitumes en préalable à leur
stockage ». Une ambiguïté résiduelle perdure tout au long de l’analyse sur l’objectif réel d’un procédé de traitement – suppression de la matrice bitume, neutralisation des sels ou le cumul des deux.

En ce qui concerne les briques technologiques de pré-traitement et de traitement, trois familles ont été rapidement exclues :

- la dénitration (qui présentait l’avantage / inconvénient de ne traiter que les sels réactifs en conservant intacte la matrice bitume), compte tenu des flux industriels très faibles et des volumes colossaux d’effluents actifs susceptibles d’être générés ;

- le traitement en milieu subcritique et supercritique (eau subcritique ou supercritique, CO₂ supercritique), exclu principalement pour des raisons de sûreté (démonstration de sûreté paraissant impossible à établir compte tenu du couple pression température très difficile à maîtriser pour l’eau supercritique et l’eau subcritique) et/ou de maturité dans le domaine du nucléaire (c’est la technologie dont le TRL est aujourd’hui le plus bas comme le CO₂ supercritique) ;

- la séparation des sels et de la matrice organique par solubilisation dans un solvant organique dans l’étape de pré-traitement avant une étape de filtration puis combustion de l’effluent organique, exclu compte tenu des risques en sûreté et sécurité notamment associés à la gestion de grandes quantités de solvant organique.

Les deux grandes familles restantes sont celles sur lesquelles il apparaît opportun de poursuivre la réflexion – elles obtiennent des notes d’ensemble supérieures à la moyenne et, si sur des critères individuels, des points paraissent compliqués à dépasser, aucun critère ne paraît rédhibitoire :

- l’incinération vitrification :

Elle possède deux grands avantages (la simplicité d’intégration – aucune étape de post-traitement, un pré-traitement exclusivement mécanique ; la réduction de volume obtenue) et deux handicaps (une maturité plus faible que la combustion classique et un travail en environnement haute activité, posant des challenges plus complexes en termes de maintenabilité et d’opérabilité). Les briques unitaires ont une bonne maturité industrielle, le couplage en revanche dispose d’une maturité moindre et fait l’objet du caractère innovant et des développements autour du procédé.

- la combustion, avec ses deux variantes : combustion classique et vaporéformage.

L’avantage principal est la simplicité des briques unitaires. La réduction de volume est moins bonne que l’incinération-vitrification et la principale difficulté réside dans l’intégration industrielle de trois ou quatre briques consécutives, avec des difficultés de transfert de matières entre les briques. On parlerait ici non pas d’un atelier, mais d’une véritable installation industrielle. La matrice bitume serait détruite et le niveau de neutralisation des sels reste à étudier. Cette solution ouvrirait cependant la possibilité d’une cimentation au lieu de vitrification.

Le vaporéformage, qui apparaît en première approche moins performant que la combustion classique, a été néanmoins conservé en vue de cette opportunité, puisqu’il permet un meilleur taux de combustion des bitumes et
par hypothèse une meilleure oxydation des sels, rendant plus accessible la perspective d’une cimentation des résidus.

En résumé, trois filières feront l’objet d’une étude de pré-faisabilité industrielle:

- concassage à froid - incinération-vitrification ;
- concassage à froid – combustion – vitrification (ou cimentation si possible) ;
- concassage à froid – vaporéformage – cimentation.

La prochaine étape de ce travail est d’évaluer la pertinence technico-économique de ces trois filières, depuis la reprise des fûts en entreposage jusqu’au stockage des résidus et des déchets induits y compris les opportunités que chacune d’elles peuvent apporter en terme de perspectives de déclassement de Cigéo vers le CSA. Une étude de sensibilité à différents paramètres, comme la localisation de l’usine de traitement, ou bien la gestion des flux, sera effectuée.

6 Si la vitrification s’avérerait nécessaire pour cette filière, alors elle serait abandonnée (la combustion classique surpasse le vaporéformage sur tous les autres critères).
10. ANNEXE : CARACTERISTIQUES PHYSIQUES DES COLIS DE DECHETS BITUMINEUX

10.1 DOMAINE DE COMPOSITIONS DES FUTS D’ENROBES DE BOUES BITUMINEES PRODUITS A LA STEL-MARCOULE

Les colis de boues bitumées de Marcoule sont constitués d’enveloppes primaires en acier doux ou inox (dépendant des périodes de production) de 230L. Le reconditionnement des colis anciens est réalisé depuis 2000 dans des enveloppes en acier inox de 380L (environ 10 895 fûts reconditionnés cf § 10.1).

L’activité contenue dans les colis d’enrobés de boues bitumées est en moyenne de l’ordre de 1 à 3 TBq en émetteurs βγ (prépondérants pendant 300 ans), et de 1 à environ 100 GBq en émetteurs α (Tableau 16).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Activité totale (en TBq/colis)</td>
<td>1,54</td>
<td>1,04</td>
<td>1,42</td>
<td>0,90</td>
<td>2,70</td>
</tr>
<tr>
<td>Activité βγ (en TBq/colis)</td>
<td>1,52</td>
<td>0,99</td>
<td>1,40</td>
<td>0,90</td>
<td>2,70</td>
</tr>
<tr>
<td>Principaux radionucléides contributeurs à l’activité βγ</td>
<td>241Pu, 103Ru, 137Cs, 90Sr - 90Y, 144Ce, 137Cs, 90Sr - 90Y</td>
<td>241Pu, 137Cs, 90Sr - 90Y, 144Ce, 137Cs, 90Sr - 90Y</td>
<td>241Pu, 137Cs, 90Sr - 90Y, 144Ce, 137Cs, 90Sr - 90Y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activité α (en GBq/colis)</td>
<td>20,6</td>
<td>47,4</td>
<td>17,6</td>
<td>18,50</td>
<td>3,50</td>
</tr>
<tr>
<td>Principaux radionucléides contributeurs à l’activité α</td>
<td>238Pu, 261Am, 240Pu</td>
<td>239Pu, 261Am, 240Pu</td>
<td>239Pu, 261Am, 240Pu</td>
<td>240Pu, 241Am, 239Pu, 242Cm</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 16 : Activités des colis d’enrobés de boues bitumées pour les colis de la STEL Marcoule produits avant 1995 les valeurs correspondent aux activités déclarées au 01/01/2013. Les activités indiquées pour les colis STEL Marcoule depuis 1995 (ainsi que STE2 et STE3 produits à La Hague) correspondent aux activités à la date de production des colis.
La production des fûts d’enrobés de la STEL Marcoule a démarré en 1966 (REF- 2 ; REF- 3), et se caractérise par 5 périodes (Figure 28) :

- période 1 (1966-1971)
- période 2 (1971-1978)
- période 3 (1978-1986)
- période 5 (1995-actuelle)

Ces 5 périodes de production se distinguent soit par des évolutions des conditions opératoires de mise en œuvre du procédé d’enrobage à chaud, soit par des modifications de certaines étapes telles que le prétraitement des boues de coprécipitation avant leur enrobage par le bitume.

![Diagram](image)

Figure 28 : Les différents types de sels utilisés pour co-précipiter les radionucléides au cours des 5 périodes industrielles (REF- 2).

Le détail sur l’ensemble des composés chimiques mis en œuvre lors de la fabrication est reporté sur la Figure 29.

Le détail des bornes de composition chimique de chacun des 4 domaines de composition est reporté dans le Tableau 17.
Tableau 17 : Teneurs massiques en composés principaux des différentes familles d’enrobés de boues bitumées produits à la STEL Marcoule.
Figure 29 : Ensemble des composés chimiques mis en œuvre lors des opérations de fabrication des colis d’enrobés de boues bitumées produits à la STEL Marcoule (REF- 3) entre 1966 et 1995.
Les familles physico-chimiques sont définies par les mélanges de sels employés pour décontaminer par co-précipitation les radionucléides solubles contenus dans des effluents de moyenne activité.

Chaque type d’effluent réceptionné dans les bassins de la STEL a fait l’objet de traitements spécifiques de co-précipitation. Les boues générées sont ensuite mélangées avant filtration puis enrobées à chaud dans du bitume.

La nature chimique, ainsi que les mélanges et les quantités des sels de coprécipitation, ont été adaptés aux caractéristiques radiochimiques des effluents à décontaminer. Ceci explique l’intégration de tous les fûts produits industriellement dans 4 familles chimiques.

Ces dispositions de définition et de conduite des procédés mis en œuvre depuis le début de la fabrication ont été retenues pour reconstruire les bornes de composition (valeurs minimale, moyennes et maximales) des 4 familles chimiques des enrobés de boues bitumées. Les bornes de compositions chimiques minimales et maximales de chaque famille sont ainsi définies par les « flow sheet » de la production industrielle opérée depuis 1966.

Depuis le démarrage des opérations de RCD (Reprise et Conditionnement des Déchets) en 2000 sur les entreposages anciens des fûts d’enrobés de boues bitumées les plus anciens produits entre 1966 et 1981, des résultats de caractérisation physico-chimiques sont obtenues (REF- 4, REF- 5). Cela concerne à la date du 19 avril 2018 une population de 10895 fûts, qui sont dorénavant entreposés dans les installations EIP de nouvelle génération. Chaque fût a été caractérisé par la technique de spectrométrie gamma (méthode d’analyse nucléaire non destructive), fournissant ainsi l’activité radiologique totale et spécifique (Césium, Actinides, etc.) par fût. Des analyses radiochimiques sont également réalisées sur des échantillons d’enrobés de boues bitumées prélevés directement dans les fûts, selon un plan de sélection des fûts basé sur les règles suivantes :

- Obtenir une population d’échantillons représentative de tous les fûts produits par la machine d’enrobage Werner A puis Werner B.
- Caractériser chaque période de production et chaque mois de production,
- Identifier le nombre de fûts estimés relevant du stockage de surface,
- Intégrer la quantité annuelle de fûts produits,
- Identifier le fût pour l’associer à une période de production,
- Respecter au minimum deux prises d’échantillon par mois de production (sur la base d’environ 10 prélèvements par fosse ancienne d’entreposage, soit environ 300 échantillons pour 6000 fûts)
Sur les prises d’échantillons, les teneurs en sels des enrobés sont mesurées, ainsi que les teneurs d’un ensemble de cations, anions et toxiques chimiques :

- Cations : Aluminium, Baryum, Calcium, Cuivre, Potassium, Fer, Manganèse, Sodium, Silice, Zinc, Magnésium, Titane, Zirconium.
- Anions : sulfates, nitrates, phosphates, carbonates
- Toxiques chimiques : Plomb, Bore, Nickel, Chrome, Mercure, Arsenic, Antimoine, Selenium, Cadmium, Béryllium.
- Molécules complexantes organiques : TBP, DBP, MBP, THP, TLA, oxalate, acétate, formiate

Depuis 1995, la production des fûts d’enrobés bitumineux fait l’objet d’un suivi appelé « Qualité Produit », qui est une nouvelle méthode de maîtrise de la qualité, fondée sur :

- l’analyse systématique de chaque lot de boues avant enrobage, et notamment un test de réactivité thermique,
- l’élaboration d’un dossier pour chaque fût, constitué des divers bilans (massiques, activités radiologiques ...) attestant du respect des exigences spécifiées,
- le suivi des contrôles périodiques des équipements et de l’instrumentation concourant à l’obtention de la qualité,
- l’analyse, le compte-rendu et le traitement d’éventuels écarts de production, le suivi de la production via le Système de Gestion Informatique de la Production,
- la gestion des approvisionnements et leur traçabilité.

10.2 DOMAINES DE COMPOSITIONS DES FUTS D’ENROBES DE BOUES BITUMEES PRODUITS A LA STE-LA HAGUE

Les principaux sels (dits solubles et insolubles ou peu solubles) formés au cours d'un traitement chimique, sur la base des réactions chimiques mises en jeu ainsi que les éléments chimiques présents dans l'effluent à traiter sont les suivants : BaSO₄, CoS, Ti(OH)₄, Ni₁·₂₆Fe(CN)₆ (PPFeNi), UO₂(OH)₂, Mg(OH)₂, Ca₃(PO₄)₂, K₂SO₄, NaNO₃, Na₂SO₄ (Tableau 18).

Les colis d'enrobés contiennent donc les sels chimiques (dits solubles et insolubles ou peu solubles) issus de la co-précipitation des radionucléides présents dans les effluents traités dans l'atelier STE2 entre de 1981 à fin 1990 et entreposés dans le silo 550-14.

Au cours de la période d'exploitation de 1981 à fin 1990, les principaux réactifs recensés dans les traitements de l'atelier STE2 sont :
- l'acide sulfurique (H₂SO₄) et le nitrate de baryum (Ba(NO₃)₂) précipitant sous la forme de sulfate de baryum destiné à l'insolubilisation du strontium,
- le sulfate de cobalt (CoSO₄) et le sulfate d'ammonium ((NH₄)₂S), remplacé à partir de 1988 par le sulfure de sodium (Na₂S), précipitant sous la forme d'un composé mixte CoS(OH)₅ entraînant le ruthénium,
- le précipité préformé de ferrocyanure de nickel et de potassium (PPFeNi), préparé à partir d'une solution de ferrocyanure de potassium et d'une solution de sulfate de nickel, permettant par échange ionique d'insolubiliser le césium,
- le sulfate de titane (TiSO₄) introduit en milieu basique afin d'améliorer la décontamination de l'antimoine et des émetteurs α,
- la soude 10 N pour la neutralisation de l'acidité initiale de l'effluent et de la soude 1 N pour ajuster le pH à sa valeur de consigne.

Le traitement sur l'atelier STE3 d'un effluent (type MA ou MA-Ti) conduit à la formation de sels insolubles et solubles par ajout de réactifs.

Les réactions chimiques mises en jeu sont les suivantes :
- Précipités formés in situ
 - Ba(NO₃)₂ + SO₄²⁻ → BaSO₄ + 2 NO₃⁻
 - CoSO₄ + Na₂S → CoS + Na₂SO₄
 - Ti(SO₄)₂ + OH⁻ → Ti(OH)₄ + 2 SO₄²⁻
- Précipités préformés ajouté à l'effluent (PPFeNi : précipité préformé de ferrocyanure de nickel et de potassium)
 - 1,2 NiSO₄ + K₄Fe(CN)₆ → Ni₁·₂₆Fe(CN)₆ + 1,2 K₂SO₄ (4)
- Neutralisation de l’acidité à la soude

 - \(\text{HNO}_3 + \text{NaOH} \rightarrow \text{NaNO}_3 + \text{H}_2\text{O} \)

 - \(\text{H}_2\text{SO}_4 + 2 \text{NaOH} \rightarrow \text{Na}_2\text{SO}_4 + 2 \text{H}_2\text{O} \)

<table>
<thead>
<tr>
<th></th>
<th>Enrobés STE3 produits durant la période 1989-2012</th>
<th>Enrobés STE2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Moy.</td>
<td>mini</td>
</tr>
<tr>
<td>Bitume</td>
<td>60,32</td>
<td>48,19</td>
</tr>
<tr>
<td>PpFeNi</td>
<td>2,37</td>
<td>0,00</td>
</tr>
<tr>
<td>BaSO_4</td>
<td>21,06</td>
<td>2,91</td>
</tr>
<tr>
<td>COs</td>
<td>2,55</td>
<td>0,00</td>
</tr>
<tr>
<td>Ti(OH)_4</td>
<td>0%*</td>
<td>0,00</td>
</tr>
<tr>
<td>Fe(OH)_3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>UO_2(OH)_2</td>
<td>0,37</td>
<td>0,02</td>
</tr>
<tr>
<td>Mg(OH)_2</td>
<td>0,03</td>
<td>0,00</td>
</tr>
<tr>
<td>Ca_2(PO_4)_2</td>
<td>0,16</td>
<td>0,02</td>
</tr>
<tr>
<td>Na_2SO_4</td>
<td>1,57</td>
<td>0,02</td>
</tr>
<tr>
<td>NaN_3</td>
<td>11,48</td>
<td>0,50</td>
</tr>
<tr>
<td>NaNO_2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K_2SO_4</td>
<td>0,04</td>
<td>0,0</td>
</tr>
<tr>
<td>Na_3(PO_4)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NaCl</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sels de cobalt (mélange CoS/Co(OH)_2) à ajouter à l’extrait sec</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,6</td>
<td>0</td>
<td>1,5</td>
</tr>
<tr>
<td>Diatomées</td>
<td>2,78</td>
<td>0,0</td>
<td>7,8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>TBP</td>
<td>-</td>
<td>0,0</td>
<td>0,4</td>
<td>-</td>
<td>0,4</td>
<td>-</td>
</tr>
</tbody>
</table>

* Tableau 18 : Compositions des enrobés de bitumes STE2 et STE3 produits à la STE de La Hague.*
11. REFERENCES BIBLIOGRAPHIQUES

REF- 2 Note Technique CEA/DEN/DADN/206, 15 décembre 2014.

REF- 4 Bilan de la caractérisation des futs d’enrobés bitumineux issus de la reprise des casemates 1 et 2 au cours de la période 2008-2012. CEA/DEN/DEIMSISN/DC GDEC 2012-032 ind.0.

REF- 5. Bilan de la caractérisation des futs d’enrobés bitumineux issus de la reprise des casemates 1 et 2 au cours de la période 2008-2014. CEA/DEN/DEIMSISN/DC GDEC 2015-41 ind.0