

I- OBJET et DOMAINE D'APPLICATION

Objet :

- Définir les conditions d'élimination des effluents radioactifs liquides de l'établissement.

Domaine d'application :

- Médecine Nucléaire.
- Cellule de Radiophysique Médicale et de Radioprotection.
- Services Techniques.

II- DEFINITION ET ABREVIATIONS

- CHP : Centre Hospitalier de Perpignan
- CRMR : Cellule de Radiophysique Médicale de Radioprotection
- PCR : Personne Compétente en Radioprotection

III- REFERENCES

- Code de la Santé Publique
- Loi n° 2006-739 du 28 juin 2006 de programme relative à la gestion durable des matières et déchets radioactifs
- Arrêté du 30 octobre 1981 modifié relatif aux conditions d'emploi des radioéléments artificiels utilisés en sources non scellées à des fins médicales
- Arrêté du 23 juillet 2008, portant homologation de la décision n ${ }^{\circ} 2008-$ DC-0095 de l'Autorité de Sureté Nucléaire du 29 janvier 2008 fixant les règles techniques auxquelles doit satisfaire l'élimination des effluents et des déchets contaminés par les radionucléides
- Circulaire DGS/DHOS n ${ }^{\circ}$ 2001-323 du 9 juillet 2001 du ministère en charge de la santé relative à la gestion des effluents et des déchets d'activités de soins contaminés par les radionucléides.

IV- DOCUMENTS ASSOCIES

Documents interne :

- Notice d'utilisation : Cuves de décroissance.
- Plan du réseau des eaux usées du service de Médecine Nucléaire.
- Convention avec le gestionnaire du réseau (en cours).

Centre Hospitalier de Perpignan	APPROUVE	PROCEDURE	Qualite
$\begin{aligned} & \text { Codification } \\ & \text { PROC_348 } \end{aligned}$	Version 1		cation 4
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS RADIOACTIFS LIQUIDES			

V- DESCRIPTION

Les examens réalisés en Médecine Nucléaire nécessitent l'administration au patient d'un produit radioactif.
La préparation, l'administration et l'élimination par le patient de ces produits est à l'origine de la production d'effluents liquides radioactifs provenant :

- Des éviers chauds et de bondes d'évacuation au sol ;
- Des sanitaires de l'unité de Médecine Nucléaire réservés aux patients injectés.

Dans notre cas, les effluents liquides contaminés par des radionucléides sont de périodes inférieurs à 100 jours et peuvent être rejetés dans l'environnement dans des conditions identiques aux effluents non radioactifs après avoir été gérés par décroissance radioactive. Les radionucléides utilisés par le service sont ${ }^{99 \mathrm{~m}} \mathrm{Tc},{ }^{18} \mathrm{~F},{ }^{201} \mathrm{TI},{ }^{131} \mathrm{I},{ }^{123} \mathrm{I},{ }^{111} \mathrm{In},{ }^{153} \mathrm{Sm},{ }^{169} \mathrm{Er}$, ${ }^{186} \mathrm{Re},{ }^{223} \mathrm{Ra}$ et ${ }^{90} \mathrm{Y}$.

La Cellule de Radiophysique Médicale et de Radioprotection (CRMR) est en charge de la gestion de ces effluents et de leur rejet dans le circuit des eaux usées du Centre Hospitalier de Perpignan (CHP).

A. EFFLUENTS LIQUIDES ELIMINES PAR LES EVIERS « CHAUDS »

- Collecte des effluents

La préparation et la manipulation des sources sont susceptibles d'entraîner un rejet accidentel de liquides radioactifs. Des éviers «chauds» et bondes d'évacuation au sol sont installés pour collecter ces rejets et les diriger vers des cuves de décroissance.

Tableau 1 : Implantation des éviers «chauds » et bondes

Salle	Eviers «chauds»	Bondes d'évacuation
Laboratoire chaud	1	1
Salle d'injection	1	1
Local UEH	1	1

Seul, les dispositifs cités précédemment sont reliés aux 2 cuves de décroissance.

- Gestion des effluents collectés dans les cuves

Le service dispose de 2 cuves de décroissance de 3000 litres situées au sous-sol dans un local spécifique ventilé et sécurisé par une clé («Local Cuves de décroissance»). En pratique ce système de cuves fonctionne alternativement en remplissage et en stockage pour décroissance radioactive. Lorsqu'une cuve est pleine, les effluents collectés sont dirigés vers l'autre cuve.

Emetteur	Cellule Qualité	Page :	$2 / 6$

Procédure: Basculement du remplissage d'une cuve à l'autre

- Ouvrir la vanne manuelle de la cuve à remplir VE1 ou VE2.
- Fermer la vanne manuelle de la cuve pleine VE2 ou VE1.
- Echanger les étiquettes des deux cuves indiquant «Cuve en remplissage» et «Cuve en décroissance».

Ces cuves de décroissance sont fabriquées par LemerPax et équipées :

- Chacune d'un manomètre ainsi que d'un détecteur de niveau de remplissage avec un affichage digital dans le «Local des cuves de décroissance» et au laboratoire chaud.
- D'un dispositif manuel de prélèvement.
- D'un trou d'homme et d'un évent filtré.
- Contrôle avant vidange des cuves

Afin de s'assurer que les effluents radioactifs contenus ne sont pas radioactifs le jour de la vidange de la cuve dans le circuit conventionnel, l'activité radioactive des effluents contenus dans les cuves est mesurée lors de la fermeture de la cuve avant la phase de décroissance.
L'organisation mise en place par la CRMR pour mesurer l'activité des effluents contenus dans la cuve est la suivante :

Procédure : Prélèvement et mesure de l'échantillon provenant de la cuve fermée par la PCR

- Effectuer un prélèvement d'environ 50 mL à l'aide de la pompe manuelle.
- Prélever 10 mL avec une seringue et l'injecter dans un flacon d'élution.
- Réaliser une mesure du flacon à l'activimètre avec le facteur d'étalonnage du 99 mTc :
- Si l'activité est inférieur à 1 MBq (seuil de détection de l'activimètre), prévoir une période de décroissance de 4 mois.
- Si elle est supérieur à 1 MBq , calculer le temps de décroissance en utilisant la période du 223 Ra afin que l'activité rejeté soit inférieure à $10 \mathrm{~Bq} / \mathrm{L}$.

Notice d'utilisation des cuves disponible dans le classeur disponible à la Cellule de Radiophysique Médicale et de Radioprotection « Gestion des cuves de décroissance».

- Rejet des effluents

Le rejet des effluents est réalisé après la date déterminée lors de la mesure réalisée à la fermeture de la cuve.

Procédure: Vidange d'une cuve de décroissance

- Vidange de la cuve :
- Ouvrir la vanne manuelle de la cuve à vider : VV1 ou VV2.
- Mettre en marche la pompe de relevage au niveau de l'armoire de commande.
- A la fin de la vidange arrêter la pompe de relevage et fermer la vanne VV1 ou VV2.
- Rinçage de la cuve :
- Ouvrir la vanne manuelle VR1 ou VR2 et l'arrivée d'eau.
- Remplissage pendant 30 min .
- Fermer l'arrivée d'eau et la vanne VR1 ou VR2.
- Vidanger la cuve de l'eau de rinçage.

- Tracabilité

Le suivi de la gestion des cuves et des résultats de l'analyse des échantillons sont tracés dans la partie «Cuves de décroissance» du document EXCEL «Gestion des effluents liquides et gazeux".
Les informations suivantes y sont indiquées:

- Numéro de cuve.
- Date de remplissage.
- Date de fin de remplissage.
- Date de la mesure.
- Résultat de la mesure
- Date prévue de la vidange
- Date de la vidange.

B. EFFLUENTS LIQUIDES ELIMINEES PAR LES « WC » DES PATIENTS INJECTES

- Collecte des effluents

L'ensemble des effluents collectés par la fosse septique sont ceux issus :

$$
\begin{aligned}
& \text { - WC « chaud» situés dans le couloir à proximité des gamma-cameras ; } \\
& \text { (WC «chaud» situés dans le couloir à proximité de la TEP ; } \\
& \text { (WC « chaud» de la salle d'attente n } 2 \text {; } \\
& \text { (Lave bassin du local UEH. }
\end{aligned}
$$

Emetteur	Cellule Qualité	Page :	$4 / 6$

Centre Hospitalier de Perpignan	APPROUVE	PROCEDURE	Qualite
Codification PROC_348	Version 1	Date 1	cation 4
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS RADIOACTIFS LIQUIDES			

- Gestion des effluents collectés

Les activités administrées aux patients, la courte période des radionucléides et l'importante dilution de ces effluents ne nécessitent pas un entreposage dans un système de cuves de décroissance.
Une décroissance de ces effluents est obtenue en les faisant transiter dans un dispositif évitant le rejet direct dans le réseau d'assainissement. Une fosse septique installée dans le «Local des cuves de décroissances» et interposée entre les sanitaires du service de médecine nucléaire et le collecteur de l'établissement permet de retarder le rejet des effluents dans le réseau.

- Rejet des effluents

Un contrôle à minima annuel des effluents rejetés dans le réseau d'assainissement est effectué par la société ALGADE. Ce contrôle est une mesure en continu, aux émissaires de l'établissement, de l'activité radioactive pendant une journée (8 heures). Il permet notamment de mettre en évidence un dysfonctionnement de la fosse septique.

- Traçabilité

Les résultats des contrôles et les dates des vidanges de la fosse septique (Une fois tous les 4 ans) sont tracés dans le document EXCEL : «Gestion des effluents liquides et gazeux ».

C. SECURITE ET CONTROLE

- Local des cuves de décroissance

Les deux cuves de décroissance et la fosse septique sont installées dans un cuvelage permettant la rétention d'au moins une cuve de liquide en cas de fuite. Ce cuvelage est équipé d'un détecteur de liquide installé à son point le plus bas. En cas de présence de liquide dans le bac une alarme se déclenche à l'entrée du «Local des cuves de décroissance », au laboratoire chaud et au PC sécurité afin de permettre une intervention rapide. Cette alarme est testée à minima tout les six mois lors du contrôle technique de radioprotection portant sur la gestion des déchets.

- Rejet dans le réseau des eaux usées

La sortie des eaux usées provenant des cuves de décroissance et de la fosse septique du service de Médecine Nucléaire sont dotées d'un système de clapet anti-retour.
Une convention avec le gestionnaire du réseau est actuellement en cours de réalisation.

Centre Hospitalier ee Perpignan	APPROUVE	DURE Qualité
Codification PROC_348	Version 1	Date d'application 14/10/14
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS RADIOACTIFS LIQUIDES		

VI- INFORMATIONS GENERALES

REDACTION			
NOM	FONCTION	DATE	VISA
M. Alexandre DUMONTET	Radiophysicien / PCR	$30 / 09 / 14$	SIGNÉ

VERIFICATION			
NOM	FONCTION	DATE	VISA
MLle Amélie AUMAILLE	Ingénieur Qualité Cellule Qualité et Gestion des Risques	$03 / 10 / 14$	SIGNÉ
M. Eric GONZALEZ	MER/PCR	$30 / 09 / 14$	SIGNÉ
Mme Maryline LAZARO	CSS, chargée de mission «procédures protocoles»	$02 / 10 / 14$	SIGNÉ
Mme Bénédicte MAS- LEGIOT	Cadre de Santé - Service de Médecine Nucléaire	$30 / 09 / 14$	SIGNÉ
M. Jean PARIETTI	TSH - Génie Thermique	$03 / 10 / 14$	SIGNÉ

APPROBATION			DATE
FONCTION	$30 / 09 / 14$	SISA	
Dr. Dominique PASCAL- ORTIZ	Médecin Nucléaire - Chef de Service	$08 / 10 / 14$	SIGNÉ
M. Jean SOL	Directeur des soins, référent qualité paramédical		

HISTORIQUE DES REVISIONS		
VERSION	DATE DE DIFFUSION	NATURE DES MODIFICATIONS
1	$14 / 10 / 14$	Création du document

LISTE DE DIFFUSION	
ENTITE	RESEAU
GED-QUALITE	ENNOV
Classement MEDECINE NUCLEAIRE / Plan de gestion des déchets radioactifs	ENNOV

Emetteur	Cellule Qualité	Page :	$6 / 6$

I- OBJET et DOMAINE D'APPLICATION

Objet: Gestion et intervention sur les canalisations d'effluents contaminés

DOMAINE D'APPLICATION :

- Médecine Nucléaire
- Services Techniques
- Cellule de Radiophysique Médicale et de Radioprotection

II- DEFINITION ET ABREVIATION

CRMR : Cellule de Radiophysique Médicale et de Radioprotection
ST : Services Techniques
PCR : Personne Compétente en Radioprotection

III- REFERENCE

- Documents ASN: Bonnes pratiques de gestion d'une fuite dans une canalisation d'effluents liquides contaminés.

IV- DOCUMENTS ASSOCIES

- Documents ASN : Fiche d'intervention

V- DESCRIPTION

A. Gestion des canalisations d'effluents contaminés

L'ensemble des canalisations constituant le circuit de collecte des effluents contaminés se situe dans la zone réglementée du service de Médecine Nucléaire ou à accès sécurisé par clé de son sous-sol.
Les canalisations sont identifiées. La Cellule de Radiophysique Médicale et de Radioprotection (CRMR) et les Services Techniques (ST) disposent d'une cartographie de celles-ci.
Une surveillance visuelle mensuelle de celle-ci est réalisée par une Personne Compétente en Radioprotection.

B. Intervention sur les canalisations

- Signalement d'un risque de fuite d'effluents contaminés:

Lorsqu'une fuite est mise en évidence dans le service de Médecine Nucléaire ou à son soussol, le personnel doit prévenir le cadre de santé du service qui contacte une Personne Compétente en Radioprotection (PCR).
En attendant l'intervention de la PCR, un périmètre de sécurité est défini autour de cette zone. L'accès y est interdit afin de limiter la contamination des locaux et personnes.
Lors de son arrivée, la PCR identifie l'origine des effluents, interdit l'utilisation de la canalisation et des points d'évacuation et vérifie s'ils sont bien contaminés.
En cas de contamination, le périmètre de sécurité est maintenu et des mesures de débit de dose sont réalisées.

- Cas d'une intervention immédiate des plombiers

La PCR est présente pendant l'intervention pour donner les consignes de radioprotection (port de la dosimétrie, des équipements de protection, contrôles de non-contamination des surfaces et personnes,...)

- Cas d'une intervention programmée des plombiers

Les personnes devant réaliser cette intervention doivent prendre rendez vous avec une Personne Compétente en Radioprotection afin de prendre connaissance des consignes de radioprotection à appliquer et d'établir la fiche d'intervention.

C. Evaluation de l'impact dosimétrique de l'incident sur le travailleur

Une analyse dosimétrique sera transmise par la PCR au Médecin du Travail si cet incident entraine une exposition anormale du travailleur ou une contamination importante.
Emetteur \quad Cellule Qualité

VI- INFORMATIONS GENERALES

REDACTION			
FONCTION	NOM	DATE	VISA
Radiophysicien / Personne Compétente en Radioprotection	M. Alexandre DUMONTET	$18 / 01 / 2016$	OK

VERIFICATION			
FONCTION	NOM	DATE	VISA
Manipulateur radio / Personne Compétente en Radioprotection	M. Eric GONZALEZ	$18 / 01 / 2016$	OK
Cadre du service de Médecine Nucléaire	Mme Bénédicte MAS-LEGIOT	$18 / 01 / 2016$	OK
TSH - Génie Thermique	M. Jean PARIETTI	$21 / 01 / 2016$	OK

APPROBATION			
FONCTION	NOM	DATE	VISA
Médecin Nucléaire Chef de Service			
Titulaire de l'autorisation ASN de détenir des radionucléides.	Dr Dominique PASCAL-ORTIZ	19/01/2016	OK

Nota : Les éléments de doses donnés sont prévisionnels. Les écarts significatifs constatés avec les doses reçues et le retour d'expérience associé sont à consigner le cas échéant dans la partie « retour d'expérience » ci-après.

CONSIGNES D'INTERVENTION	(à remplir par la PCR)		
Date formation et information du personnel intervenant :			
Dosimétrie opérationnelle (active)	$\boxed{\text { Oui }}$		
Dosimétrie complémentaire (bague, dosi poignet,...)	\square Oui	\square Non	Précisez laquelle :
Tenue d'intervention :	\square Combinaison étanche	\square Gants	\square Protection respiratoire :
	\square Surchaussures	\square Lunettes	\square Autres (précisez) :
Commentaires :			

Centre Hospitalier ee Perpignan	$A P P R O U V E$		PROCEDURE	Qualité
Codification PROC_349		Version 1		cation 4
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS GAZEUX DU SERVICE DE MEDECINE NUCLEAIRE				

I- OBJET et DOMAINE D'APPLICATION

Objet:

- Définir les conditions d'élimination des effluents radioactifs gazeux de l'établissement.

Domaine d'application:

- Médecine Nucléaire ;
- Cellule de Radiophysique Médicale et de Radioprotection ;
- Services Techniques;

II- DEFINITION ET ABREVIATIONS

- CRMR : Cellule de Radiophysique Médicale de Radioprotection
- CHP : Centre Hospitalier de Perpignan
- PCR : Personne Compétente en Radioprotection
- TEP : Tomographie par Emission de Positons

III- REFERENCES

- Code de la Santé Publique
- Loi n° 2006-739 du 28 juin 2006 de programme relative à la gestion durable des matières et déchets radioactifs
- Arrêté du 30 octobre 1981 modifié relatif aux conditions d'emploi des radioéléments artificiels utilisés en sources non scellées à des fins médicales
- Arrêté du 23 juillet 2008, portant homologation de la décision n ${ }^{\circ} 2008-$ DC-0095 de l'Autorité de Sureté Nucléaire du 29 janvier 2008 fixant les règles techniques auxquelles doit satisfaire l'élimination des effluents et des déchets contaminés par les radionucléides
- Circulaire DGS/DHOS n ${ }^{\circ}$ 2001-323 du 9 juillet 2001 du ministère en charge de la santé relative à la gestion des effluents et des déchets d'activités de soins contaminés par les radionucléides.

IV- DOCUMENTS ASSOCIES

- Annexe : Procédure de changement des filtres

Document interne :

- Plans du système de ventilation du service de Médecine Nucléaire

Centre Hospitalier de Perpignan	$A P P R O U V E$		PROCEDURE	Qualité
Codification PROC_349		Version 1	Date	cation 4
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS GAZEUX DU SERVICE DE MEDECINE NUCLEAIRE				

V- DESCRIPTION

Les examens réalisés en Médecine Nucléaire nécessitent l'administration au patient d'un produit radioactif.
La préparation et l'administration de ces produits sont susceptibles d'être à l'origine de la production d'effluents gazeux radioactifs de période inférieur à 100 jours. Les radionucléides utilisés par le service sont ${ }^{99 \mathrm{~m}} \mathrm{Tc},{ }^{18} \mathrm{~F},{ }^{201} \mathrm{Tl},{ }^{131} \mathrm{I},{ }^{123} \mathrm{I},{ }^{111} \mathrm{In},{ }^{153} \mathrm{Sm},{ }^{169} \mathrm{Er},{ }^{186} \mathrm{Re}$ et ${ }^{90} \mathrm{Y}$.
La zone réglementée du service de Médecine Nucléaire dispose donc d'un système de ventilation indépendant du reste service et de l'établissement.

A. Ventilation générale du service de Médecine Nucléaire

- Description du système

Le système de ventilation de Médecine Nucléaire est assuré par 3 centrales d'extraction situées au sous sol du service :

- Centrale de traitement d'air E18 : insufflation et extraction d'air de la zone non réglementée.
- Centrale de traitement d'air E17: insufflation et extraction d'air de la zone réglementée hors salle d'examen TEP.
- Centrale de traitement d'air E19: insufflation et extraction d'air de la salle d'examen TEP.
Ces trois centrales d'extraction disposent de filtres. La E17 dispose d'un filtre à charbon actif. Le changement de ces filtres est réalisé une fois par an par la société DALKIA en présence d'une Personne Compétente en Radioprotection (PCR). (Annexe 1 : Procédure de changement des filtres).
L'air est ensuite rejeté par ces centrales au niveau du 4ème étage du bâtiment à distance de toute prise d'air neuf. Lors de la construction du service l'orientation de la sortie a été définie en tenant compte de l'orientation des vents dominants.
Le rejet de la ventilation du local technique de ventilation, de type naturel, situé au niveau sous-sol, se fait dans la cours anglaise en façade est.
- Description du fonctionnement des ventilations

La ventilation de l'ensemble des locaux de la zone réglementée est en dépression. Le taux de renouvellement horaire d'air est au minimum de 5 volumes/h pour l'ensemble des locaux de la zone réglementée à l'exception de celui du laboratoire chaud qui est au minimum de $10 \mathrm{vol} / \mathrm{h}$.

Seule exception la salle de marquage cellulaire est classée en ISO 7. Elle bénéficie de dispositions particulières. La pression est nulle. Son débit de soufflage est égal au débit d'extraction. Le taux de renouvellement d'air est de 5 volumes par heure.

Centre Hospitalier de Perpignan			PROCEDURE	Qualité
Codification PROC_349		Version 1		cation 4
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS GAZEUX DU SERVICE DE MEDECINE NUCLEAIRE				

- Contrôle des ventilations

Une société externe procède chaque année à deux contrôles des ventilations :

- Un contrôle de la pression et du taux de renouvellement d'air de l'ensemble de la zone réglementée.
- Un contrôle concernant la classification particulaire de la salle de marquage cellulaire en ISO 7.

B. Enceintes blindées du laboratoire chaud

Les deux enceintes blindées situées dans le laboratoire chaud sont pourvues d'un système d'extraction indépendant, avec un taux de renouvellement d'air de 25 volumes par heure. Chacune est équipée d'un filtre à charbon actif, d'un ventilateur et d'un clapet antiretour. Les effluents gazeux sont rejetés directement au niveau du 4ème étage du bâtiment. Le changement de filtre est effectué tous les ans lors de la maintenance par le fournisseur. Une PCR est présente à cette occasion pour réaliser un contrôle de noncontamination du filtre. En cas de contamination, il est emballé dans un sac DASRI et placé en décroissance durant un an dans le local de gestion des déchets par décroissance (cf. annexe).

C. Salle de Ventilation pulmonaire

La salle de ventilation pulmonaire est équipée d'un système d'aspiration de gaz sur bras articulé (système d'aspiration de gaz LemerPAx avec système de filtration à charbon actif). Il est placé à proximité du visage du patient lors de l'administration du traceur de ventilation. Dans le service, c'est le Technégas® qui est principalement utilisé.
L'extracteur dédié au bras articulé se trouve au dessus de celui-ci dans le plafond. L'extraction est indépendante, les effluents sont rejetés directement au niveau du 4ème étage du bâtiment. Le changement de filtre à charbon actif est assuré une fois par an par LemerPax en présence d'une PCR (cf. annexe).

D. Locaux de gestion des déchets

Ces locaux sont situés au sous-sol du service de Médecine Nucléaire. Le local de stockage des déchets pour décroissance et le local des cuves de décroissance sont équipés de systèmes de ventilation mécanique avec filtre. Le changement de ce filtre est réalisé une fois par an en présence d'une PCR (cf. annexe).

Centre Hospitalier de Perpignan	$A P P R O U V E$		PROCEDURE	Qualité
Codification PROC_349		Version 1		cation 4
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS GAZEUX DU SERVICE DE MEDECINE NUCLEAIRE				

VI- ANNEXE

Annexe : Procédure de changement des filtres

Centre Hospitalier de Perpignan	APPROUVE		PROCEDURE	Qualite
Codification PROC_349		Version 1		cation 4
PLAN DE GESTION DES DECHETS RADIOACTIFS GESTION DES EFFLUENTS GAZEUX DU SERVICE DE MEDECINE NUCLEAIRE				

VII- INFORMATIONS GENERALES

REDACTION			
NOM	FONCTION	DATE	VISA
M. Alexandre DUMONTET	Radiophysicien / PCR	$30 / 09 / 14$	SIGNÉ

VERIFICATION			
NOM	FONCTION	DATE	VISA
MLle Amélie AUMAILLE	Ingénieur Qualité Cellule Qualité et Gestion des Risques	$03 / 10 / 14$	SIGNÉ
M. Eric GONZALEZ	MER/PCR	$30 / 09 / 14$	SIGNÉ
Mme Maryline LAZARO	CSS, chargée de mission «procédure et protocoles »	$02 / 10 / 14$	SIGNÉ
Mme Bénédicte MAS- LEGIOT	Cadre de Santé - Service de Médecine Nucléaire	$30 / 09 / 14$	SIGNÉ
M. Jean PARIETTI	TSH - Génie Thermique	$03 / 10 / 14$	SIGNÉ

APPROBATION			
NOM	FONCTION	DATE	VISA
Dr. Dominique PASCAL- ORTIZ	Médecin Nucléaire - Chef de Service	$30 / 09 / 14$	SIGNÉ
M. Jean SOL	Directeur des soins, référent qualité paramédical	$08 / 10 / 14$	SIGNÉ

HISTORIQUE DES REVISIONS		
VERSION	DATE DE DIFFUSION	NATURE DES MODIFICATIONS
$\mathbf{1}$	$14 / 10 / 14$	Création du document

LISTE DE DIFFUSION	
ENTITE	RESEAU
GED-QUALITE	ENNOV
Classement MEDECINE NUCLEAIRE / Plan de gestion des déchets radioactifs	ENNOV

Page: 5/5

